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B. Effects of progestins on cell proliferation in vitro
C. Future directions

I. Introduction

THE control of cellular proliferation is known to
involve a delicate balance between the effects of

different regulatory molecules including hormones and
growth factors which provide, in the immediate environ-
ment of the cell, signals to stimulate or inhibit cellular
replication (1). The past decade has seen significant
progress in the identification and characterization of
novel regulatory molecules, generally referred to as
growth factors, and definition of their molecular mech-
anisms of action (2, 3). With the recent emphasis on
peptide growth factors it is perhaps less well appreciated
that some of the largest physiological changes (both
positive and negative) in rates of growth and cell prolif-
eration are mediated by steroid hormones. Recent studies
on breast cancer cells (4) and immature rat uterus (5, 6),
illustrating estrogenic control of autocrine and paracrine
growth factor production, support the view that some of
these steroid-induced responses are intimately linked to
growth factor-mediated pathways although debate con-
tinues as to whether the growth factor response is the
cause, or the consequence, of the estrogenic effect on
cellular proliferation (7, 8). Generally speaking, the mo-
lecular mechanisms by which steroid hormones control
proliferation are not well defined, with the most devel-
oped knowledge being in the area of estrogen action
where a number of recent reviews are available (4, 9-11).

The regulation of growth and development of most
female sex organs involves a balance between the actions
of the two major female sex steroid hormones, estradiol
and progesterone. While estrogen, acting in concert with
other hormones and growth factors, appears to be the
major drive to the proliferation of these tissues, proges-
terone is concerned principally with two major functions
in normal mammalian physiology. First, progesterone is
involved in preparing the uterus for implantation of the
fertilized ovum and making nutrients available for its
subsequent development. Second, progesterone causes
the glandular elements of the mammary gland to grow
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and develop into secretory epithelium with the ultimate
effect of acting in concert with other hormones, partic-
ularly PRL, to facilitate milk production. In the most
simplistic terms, progesterone might be seen as the "dif-
ferentiating" female sex steroid which inhibits the "pro-
liferative" effects of estrogen and directs the tissue to-
ward its normal differentiated function. Biological regu-
lation, of course, is never so simple, and progesterone is
known to have a number of other normal physiological
functions including the regulation of ovulation at both
neural and ovarian loci, and major behavioral effects
including the control of sexual receptivity. Furthermore,
progesterone is not always "antiproliferative" and in
some tissues induces proliferative responses of its own.
In the case of the induction of stromal proliferation in
the uterus, this represents a corollary of its primary
function in facilitating implantation; in the case of its
stimulation of lobuloalveolar proliferation in the mam-
mary gland, such an action is a requirement for the
development of lactation.

This review focuses specifically on the effects of pro-
gesterone on cell proliferation, an area of biology that
has not been well studied from a mechanistic viewpoint
and which has not been the subject of any recent in-
depth review, although there are a number of recent
reviews on progesterone receptor (PR) and progestin
action (12-14). Emphasis is placed on the two most
studied progestin target tissues, the uterus and the mam-
mary gland, and on the human given the widespread
pharmacological use of synthetic progestins. Such uses
include treatment of endometrial and breast cancer, as
combination oral contraceptive agents, and as adjuncts
to estrogen in hormonal replacement therapy of post-
menopausal women. While the benefits of progestins as
first or second line therapy in the treatment of breast
and endometrial carcinoma have been widely acknowl-
edged, the long-term use of progestins as contraceptives
or for the prophylaxis of the menopause has come under
closer scrutiny. Although it is clear that the majority of
women suffer no increased risk of breast or endometrial
carcinoma as a consequence of combined oral contracep-
tive use, there is emerging concern that specific
subgroups may have an increased risk of developing
breast cancer [(15), reviewed in Ref. 16]. Progestin sup-
plementation of estrogens in postmenopausal hormone
replacement regimens has been shown repeatedly to
mimic the premenopausal cyclical exposure to these hor-
mones, and progestin use is advocated in order to protect
against the unopposed effects of estrogen (17) on the
development of endometrial carcinoma (reviewed in Ref.
18). However, the observation that breast epithelial pro-
liferation is maximal in the luteal phase of the menstrual
cycle (reviewed in Section II. B.3) raises the possibility
that progestins may cause inappropriate proliferation in

the breast. It has recently been suggested that progestin
supplementation of estrogen replacement therapy could
lead to an increase in breast cancer risk (19), and prelim-
inary data in support of this hypothesis are emerging
(20). In the light of these data, the effects of progestins
on cellular proliferation in the breast require critical
reexamination with a view to determining the effects of
long-term prophylactic progestin use on subsequent risk
of breast cancer development.

As mentioned above, much of the action of progester-
one involves modulating the growth-stimulatory effects
of estrogens. This could be achieved in a number of ways
including progesterone-mediated changes in estrogen se-
cretion, via effects on the hypothalamo-pituitary axis or
directly at the site of synthesis, changes in the level of
target tissue sensitivity by progestin-induced increases
in the activity of estrogen-metabolizing enzymes, or de-
creases in estrogen receptor (ER) concentrations, effects
on estrogen-induced paracrine or autocrine growth factor
secretion and action, and direct antagonism of estrogen
action at the postreceptor level. In addition, progestins
might be expected to exert effects on cellular prolifera-
tion of target tissues independent of estrogen action. In
other words, progestins may have direct growth-inhibi-
tory actions apart from their ability to inhibit estrogen-
mediated cell proliferation, and evidence is accumulating
for such effects. In this review the evidence for these
potential mechanisms of progestin action is critically
evaluated with an aim to developing rational hypotheses
to explain current knowledge on the action of progestins
on cellular proliferation.

II. Effects of Progestins on Cellular Proliferation
in Vivo

The effects of progestins on cell proliferation in vivo
have been investigated in a number of progestin target
tissues, with the majority of studies having concentrated
on the uterus and mammary gland. Two principal ap-
proaches have been followed, involving either 1) the
administration of progestins to immature, ovariecto-
mized, or intact animals and assessing effects on cellular
proliferation and differentiation; or 2) correlative studies
relating changes in cell proliferation to changes in serum
progesterone levels. In addition, there is an extensive
literature on the effects of progestins on the growth and
development of hormone-responsive tumors of the mam-
mary gland, but in general such studies have not ad-
dressed basic mechanisms through which progestins con-
trol cell proliferation.

A. Uterus

1. Mouse. The uterus of the ovariectomized mouse has
been the most widely utilized experimental system for
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studies on estrogen (reviewed in Ref. 21) and progester-
one control of cellular replication in vivo. In this system
estradiol alone causes a major mitogenic response in both
luminal and glandular epithelial cells but not in the
connective tissue stroma (22-24). Progesterone admin-
istration significantly alters the proliferative response to
estradiol. Pretreatment with progesterone for 3 days
completely inhibits epithelial cell proliferation while sen-
sitizing the stromal cells to respond to estradiol with
increased mitosis (22, 25-29). This progestin-induced
switch in proliferation from epithelium to stroma is an
essential prerequisite for implantation and decidualiza-
tion in the mouse and rat (26). It is of major interest
that in the mouse model, while progesterone inhibits
estrogen-induced mitosis in the epithelium, it acts syn-
ergistically with estrogen to stimulate stromal prolifera-
tion. Progesterone alone is capable of inducing a small,
but significant, number of mitoses in both the epithelium
and stroma when administered alone (22, 25-29). The
effects of progesterone, alone or in combination with
estrogen, on cellular proliferation in the mouse uterus
are summarized in Table 1.

These early studies also provided some insight into the
cell kinetic basis of progestin antagonism of estrogen-
induced epithelial cell proliferation by measuring the
mitogenic response to estradiol when a single injection
of progesterone is given at various times before or after
the estrogen. While prior administration of progesterone
(up to 10 h before estradiol) or simultaneous administra-
tion of the two hormones completely blocks the estro-
genic response, no inhibition is seen when progesterone
is given as little as 2.5 h after estradiol. Since estrogen
induces synchronous progression of mouse uterine epi-
thelial cells through the cell cycle it seems likely that
progesterone inhibits mitosis by some action early in the
Gi phase and is without effect on progression through

TABLE 1. Cell proliferation in the mouse uterus

Cell type
Treatment

None E P E > P P > E E + P

Ovariectomized"
Epithelium

Luminal ND ++++ + ++++ -b ++c ++
Glandular ND ++++ + ++++ -b -c ++

Stroma ND - + ND +++b -c +++

Neonatald

Epithelium
Stroma

ND
ND

ND
ND

ND
ND

0 Adapted with permission from Refs. 21-29.
d Adapted from Refs. 35 and 36.
E, estradiol; P, progesterone. (e) 12-18 h after treatment, (0 24-48

h after treatment; E > P, estradiol followed by progesterone; P > E,
progesterone followed by a single (b) or multiple (c) estradiol injections;
E + P, combined estradiol and progesterone; ND, not done.

late d , S, and G2 phases (26, 28, 29). This effect on cell
cycle progression is accompanied by progesterone inhi-
bition of estrogen-induced increases in acidic nuclear
protein synthesis (30) but does not involve gross changes
in protein synthesis, ribosomal RNA synthesis, polysome
profiles, and accumulation of total protein and RNA (31)
or changes in the nuclear or cytoplasmic binding of
estradiol (32). Indeed, at early time points progesterone
potentiates the effect of estradiol on macromolecular
synthesis, indicating that progesterone inhibition of
DNA synthesis is mediated independently of its regula-
tory effect on RNA and protein synthesis (31). The
inhibition of epithelial proliferation is associated with
morphological changes characteristic of epithelial differ-
entiation (26).

The subsequent effects of multiple administrations of
estradiol on the progestin-pretreated uterus emphasize
the differential cellular responses to these steroids within
the one organ. Administration of estrogen to progester-
one-pretreated animals results in little change in epithe-
lial morphology and DNA synthesis after a single injec-
tion although protein synthesis increased to a greater
extent than that observed after estrogen administration
to progesterone-untreated animals. Interestingly, a sec-
ond injection of estrogen 24 h later results in DNA
synthesis and mitosis, and this occurs predominantly in
the antimesometrial region of the luminal epithelium
where implantation normally occurs. Thus, the antipro-
liferative and differentiation-inducing effects of proges-
terone can be reversed by estrogen in the luminal epithe-
lium. This appears not to be the case in the glandular
epithelium where, irrespective of the dose or the number
of injections of estrogen, mitoses are rarely observed in
progesterone-treated mice. In the progesterone-treated
stroma, a single injection of estradiol results in synchron-
ous entry of 30-40% of stromal cells into S phase while
a second injection of estradiol produces no further effect.
It thus appeared that progesterone stimulates resting
stromal cells to enter the cell cycle where estrogen accel-
erates their passage through a single round of replication
by shortening the G: phase. This single round of repli-
cation is thought to be a prerequisite for the differentia-
tion of stromal cells into decidual cells and their with-
drawal from the cell cycle (27). If true, the latter effect
could explain the lack of mitogenic response to subse-
quent administration of estradiol. These results illustrate
the complexity of progestin action in vivo with differen-
tial effects on different cell types within the same organ.
The complexity of the uterine response to progestins is
further complicated by the fact that the connective tissue
stroma is a mixture of cell types including fibroblasts,
blood vessels, macrophages, and lymphocytes, all of
which may have the capacity to respond directly or
indirectly to progestins.

 by on January 1, 2010 edrv.endojournals.orgDownloaded from 

http://edrv.endojournals.org


May, 1990 PROGESTIN REGULATION OF CELLULAR PROLIFERATION 269

These seminal observations of Martin and colleagues
in the mouse uterus identified the critical issues that
needed to be considered in attempting to define the
molecular basis of progestin effects on cell proliferation.
In particular, the complexity of the response was illus-
trated by observations on the cell type specificity of
progestin responsiveness and the dependence of the pro-
liferative response, not only upon the relative concentra-
tions of estradiol and progesterone, but also upon the
temporal relationship between their administration. In
addition, documentation of the inhibitory effects of pro-
gestins on epithelial cell proliferation provided experi-
mental evidence to support the pharmacological use of
progestins in the treatment of endometrial carcinoma.
Perhaps more importantly, from a mechanistic view-
point, the data on cell cycle kinetics illustrate the inhi-
bition of cell cycle progression in early Gi phase in
epithelial cells (28, 29) and activation of resting or Go

stromal cells (27), and identified the fundamental para-
dox of progestin control of replication, i.e. these com-
pounds appear to have both stimulatory and inhibitory
effects on target cell proliferation. Thus, any unifying
model of progestin action must accommodate this appar-
ent paradox, a goal that has yet to be attained.

Although the uterus of the ovariectomized mouse pro-
vides a well defined and attractive model with which to
study the effects of progestins on cell proliferation, there
have been few recent studies employing this experimen-
tal system. Cheng et al. (31) utilized the model to differ-
entiate the effect of estrogens and progesterone on the
accumulation of ribosomal RNA and protein, from those
on DNA synthesis. The data showed, in contrast to some
theories on cell cycle progression, that these parameters
were regulated separately in mouse uterine epithelium,
and led to the suggestion that progesterone inhibition of
epithelial cell proliferation was mediated either by inhib-
iting the synthesis of messenger RNA (mRNA) for a
protein intimately involved in the inititation of DNA
synthesis, or by interfering with the interaction of such
a protein with chromatin. A previously identified 32
kilodalton acidic nuclear protein (30), with properties
similar to the proliferation-associated protein cyclin (33),
was cited as a potential regulator of DNA synthesis in
this model (31). A more recent publication has demon-
strated that the antiprogestin/antiglucocorticoid, RU
486, completely inhibits the progestin-induced switch of
estrogen-mediated cell proliferation from the epithelium
to the stroma while at the same time inhibiting proges-
terone-induced differentiation of the epithelium (34).
Such data provide strong evidence that the effects of
progestins on cell proliferation in the adult ovariecto-
mized mouse uterus are PR mediated.

In contrast to the situation in the adult ovariectomized
mouse, the rate of luminal epithelial cell proliferation in

the uterus of the neonatal mouse is high and appears to
be estrogen-independent in that it is not reduced in the
ovariectomized-adrenalectomized animal (35). These
properties render the neonatal mouse uterus a conven-
ient model for studying the effects of progestins on cell
proliferation in an apparently estrogen-free environ-
ment. Such an approach has been adopted by Bigsby and
Cunha (36) who studied the effects of progesterone and
glucocorticoids in neonatal mouse uterus both in situ and
when grafted under the kidney capsule of ovariectomized
adult mice. Rates of cell proliferation, assessed by [3H]
thymidine labeling and mitotic indices, after progester-
one treatment were significantly reduced in uterine epi-
thelium, unaffected in vaginal epithelium, and stimulated
in the stroma. The latter effect was transient with the
labeling index in the stroma returning to control levels
at 24 h. Interestingly, the dose dependence of the inhib-
itory and stimulatory effects on the epithelium and
stroma were markedly different as was the steroid spec-
ificity of the response. One hundred fold higher doses of
progesterone were needed to inhibit epithelial prolifera-
tion than were required for stimulation of stromal pro-
liferation. Since the former effect could be reproduced
with dexamethasone and to a lesser extent with cortisol,
it appears that inhibition of epithelial cell proliferation
in the neonatal mouse was mediated via the glucocorti-
coid receptor (GR) while progesterone stimulation of
stromal proliferation was via PR. Progesterone antago-
nism of luminal epithelial proliferation was also apparent
when neonatal uteri were grafted into adult ovariecto-
mized animals (36). The same authors confirmed potent
progesterone antagonism of estrogen-independent
growth in an ovariectomized rat model when epithelial
cell proliferation was stimulated by intraluminal admin-
istration of cholera toxin (37). Both these sets of data
provide strong evidence for progestin effects on prolif-
eration that are independent of progestin effects on
estrogen-mediated proliferation.

2. Rabbit. Although studies on the effects of progesterone
on uterine cell proliferation are most detailed in the
mouse model, there are published studies using several
other species. It is beyond the scope of this review to
summarize studies that document the effects of proges-
tins on DNA synthesis in the whole organ; rather, dis-
cussion will be confined to data on the cell proliferation
kinetics of individual cell types within the uterus. In this
regard the rat uterus appears to respond in a similar
manner to the mouse (38-41); in marked contrast to
these species, however, progesterone stimulates endo-
metrial proliferation in the rabbit, illustrating significant
species differences in the proliferative response to pro-
gestins. The rabbit is unusual in that it is in almost
constant estrus, and does not ovulate unless mating takes
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place. It is likely, therefore, that progesterone secretion
from the ovary consequent to mating and ovulation plays
an important role in the proliferation of the uterus in
preparation for implantation.

In intact rabbits, progesterone stimulates the labeling
index of both luminal and glandular epithelium; the
latter is also stimulated by estradiol, but to a lesser
extent. Simultaneous administration of both estradiol
and progesterone abolishes the proliferative response
(Table 2). Foci of active epithelial cell proliferation are
always found in the luminal epithelium after progester-
one treatment and are postulated to be related to gland
formation (42). In a subsequent publication (43) the same
authors demonstrated that rabbit uterine epithelium
consists of quiescent and cycling cells with differential
proliferative responses to estrogen and progesterone. The
progesterone-induced increase in proliferation in both
luminal and glandular epithelium was attributed to
shortening of the cell cycle, although an effect on the
recruitment of quiescent cells into the cell cycle is not
ruled out. In ovariectomized rabbits estrogen alone
causes slight epithelial proliferation with no effect on the
stroma and myometrium. Progesterone alone has no
effect on the epithelium unless the animals are primed
with estrogen. Under this treatment regimen, i.e. estro-
gen priming followed by progesterone administration,
maximal DNA synthesis and mitosis occur in the epithe-
lium with smaller responses in the stroma and circular
muscle (44). The effect was not maintained since after a
third daily injection of progesterone, cell proliferation
declined in accordance with the low level of cell division
in mid to late pregnancy in the rabbit.

The proliferative responses to estrogen and progester-
one in the rabbit uterus need to be considered in the
light of the differential distribution of ER and PR in this
tissue. The mean intensity of ER immunostaining is
highest in the luminal epithelium, which paradoxically
failed to proliferate in response to estrogen, and then in

TABLE 2. Cell proliferation in the rabbit uterus

Cell type
Treatment

E + P
Intact"
Epithelium

Luminal
Glandular

Ovariectomized*
Epithelium
Myometrium
Stroma

ND
ND

Abbreviations are as for Table 1.
0 Adapted with permission from Ref. 42.
b Adapted with permission from Ref. 44.
c Declined after third daily progesterone injection.

decreasing order: glandular epithelium > myometrium >
stroma (45). Furthermore, PR concentrations are low or
barely detectable in luminal and glandular epithelium
(45, 46), where the greatest proliferative effect of proges-
terone is noted. The highest PR levels are found in
myometrium and stroma, and the possibility that pro-
gesterone is acting on these cells to induce the synthesis
of a paracrine factor responsible for epithelial cell prolif-
eration cannot be excluded.

3. Monkey. The necessity for cyclical renewal of the
endometrium sets the primates apart from the species
discussed above. If fertilization does not occur within a
menstrual cycle, the endometrium regresses and is elim-
inated. However, progenitor cells remain and regenerate
the endometrium in preparation for the subsequent cycle,
in a process that begins while the serum concentration
of progesterone is still elevated. The process of endome-
trial renewal in the monkey uterus has been delineated
in seminal studies from Padykula and co-workers and
has been recently reviewed (47). The Rhesus endome-
trium can be divided laterally into 4 zones that reflect
its histological and functional compartmentalization.
Zones I and II contain the luminal and upper glandular
epithelium and surrounding stroma, and together make
up the zona functionalis of the endometrium, which is
shed during menstruation. Zones III and IV comprise the
germinal zona basalis, which gives rise to the zona func-
tionalis in the subsequent cycle.

Intravascular injection of [3H]thymidine to Rhesus
monkeys in midcycle, followed 1 hr later by removal of
the endometrium by hysterotomy, was used to determine
the epithelial labeling indices within each of the zones
(47, 48). During the estrogen surge, epithelial labeling
indices are higher overall in the functionalis than in the
basalis, and furthermore within zones I, II, and III the
magnitude of the response remains the same throughout
the estrogen surge (Table 3). The fall in serum estrogen
levels and the concomitant rise in progesterone levels
after midcycle result in inhibition of epithelial mitoses
in zones I-III. In marked contrast to the proliferative
activity in zones I-III, the cells of the deep zona basalis
(zone IV) show little labeling during the estrogen surge,
but the number of dividing cells increases steadily as the
serum concentration of progesterone rises. This distinct
pattern of proliferative activity in response to progester-
one suggests that this agent may be responsible for the
production of progenitor cells leading to zona function-
alis regeneration in the subsequent cycle.

4. Human. The cyclical histological changes in the en-
dometrium during the human menstrual cycle are well
documented and have been correlated with changes in
the circulating concentrations of estrogen and progester-
one. Cyclical changes in proliferation were first described
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TABLE 3. Cell proliferation in the primate uterus

Treatment

Cell type E>P E>P
day 19-22 day 22-28

Human0

Epithelium
Functionalis

Stroma
Functionalis

Monkey*
Epithelium

Functionalis
Basalis IV

ND
ND

° Adapted with permission from Refs. 49-54. E, Estrogen exposure
(proliferative phase of the menstrual cycle or estrogenized postmeno-
pausal endometrium). E > P, Secretory phase (menstrual cycle days)
or progestin-treated estrogenized postmenopausal endometrium.

6 Adapted with permission from Refs. 47 and 48. E and E > P
describe artificial menstrual cycles induced in ovariectomized animals.

by Nordqvist (49), who showed in whole endometrium
that DNA synthesis was maximal around the time of
ovulation, then decreased to a low level until the end of
the cycle when a second wave of proliferation was noted.
These changes were described in more detail by Ferenczy
and co-workers, who examined [3H]thymidine labeling
of the endometrium at six time points (three prolifera-
tive, three secretory) during the menstrual cycle (50).
DNA synthesis in both the glandular epithelium and
stromal elements increased as the serum estrogen con-
centration increased, to reach a peak around the time of
ovulation (Table 3). The rise in serum progesterone in
the postovulatory phase resulted in the disappearance of
mitoses in both epithelial and stromal cells, and this
suggested that progesterone was able to inhibit estrogen-
induced cell proliferation in these cells. The observation
that DNA synthesis is high in the proliferative phase
and low or absent after ovulation was confirmed in later
studies (51-54). The hypothesis that progesterone inhib-
ited estrogen-mediated DNA synthesis was tested di-
rectly by progestin treatment in vivo of estrogenized
postmenopausal endometrium. This resulted in the rapid
inhibition of epithelial [3H]thymidine incorporation, to
levels seen in the secretory phase of the premenopausal
cycle (51, 52). The inhibition of mitosis was accompanied
by induction of glandular secretory activity and demon-
strated the ability of progestins to promote differentiated
function in postmenopausal women on estrogen therapy.

The effect of progestins on stromal cells is complex.
Although the significant stromal proliferation observed
during the proliferative phase is decreased soon after
ovulation, the stroma shows a second wave of prolifera-
tion, presumably in response to progesterone: stromal
mitoses reappear in the last few days of the cycle in

concert with the predecidual reaction observed in these
cells. This was clearly demonstrated in hysterectomy
specimens by Ferenczy and co-workers (50), who showed
that stromal DNA synthesis was low from days 19-22,
but increased markedly from days 23-28 of the cycle in
the zona functionalis but not the zona basalis of the
endometrium. This suggested that the second wave of
endometrial DNA synthesis originally observed by
Nordqvist (49) was in fact due to stromal proliferation.
It is noteworthy also that mitotic activity is higher in
the secretory, progesterone-dominated, phase of the cycle
in uterine leiomyomas, which are thought to be derived
from the same progenitor cells as the stroma (55). Inter-
estingly, support for the onset of progestin action in the
stroma late in the cycle is provided by the presence of
PR at that time (56), presumably allowing continued
progestin responsiveness and resulting in stromal prolif-
eration and decidual transformation.

A number of other studies have also examined the
effect of progestins on [3H]thymidine incorporation in
stromal cells. These demonstrated that progestins ap-
peared either to increase or decrease stromal labeling
indices; neither change reached statistical significance,
possibly reflecting the paucity of specimens analyzed (54,
57). It is also probable that if the stimulatory effects of
progestins on stromal cells are observed only late in the
cycle, pooling of results from endometrial specimens
obtained both early and late in the secretory phase,
during which opposing effects of progestins on stromal
proliferation occur, would lead to an inability to distin-
guish between the inhibitory and stimulatory effects of
progestins.

The effects of progestins on stromal proliferation need
to be reexamined, however, in the light of recent evidence
that the wave of proliferation noted in the secretory
phase of the cycle is confined to the lymphoid population
of the stroma, with little or no proliferation being ob-
served in cells not expressing lymphoid markers (58).

Progestins are also known to inhibit the growth of
endometrial carcinoma tissue (see Refs. 59 and 60 and
references therein), which provides the basis for their
widespread use as therapeutic agents. The labeling index
in endometrial carcinoma tissue was shown to be high
and comparable to that of the normal endometrium in
the proliferative phase of the cycle (54, 61). DNA syn-
thesis in endometrial carcinoma tissue is lowered in the
presence of progestins, and in this regard this tissue
resembles the epithelial component of the endometrium
from which it arises (62). These similarities in prolifer-
ative response between well-differentiated endometrial
carcinoma in particular and normal endometrial epithe-
lium extend to the likely mechanisms by which proges-
tins inhibit endometrial carcinoma proliferation, and
these are discussed in Section V.C.
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B. Mammary gland

The hormonal control of mammary gland development
and function has been the subject of extensive investi-
gation over several decades. This has resulted in a volu-
minous literature covering a wide spectrum of biomedical
disciplines including biochemistry, cell biology, endocri-
nology, pathology, and physiology. While the current
review will be confined almost entirely to recent litera-
ture on the role of progesterone and its interaction with
estrogen, in the control of cell proliferation within the
mammary gland of selected species, the reader is referred
to several detailed reviews on other aspects of the topic,
particularly as they relate to the early literature (63-67).
Although mammary epithelial development involves
complex interactions between a number of different hor-
mones, which may vary between species and at different
stages of development, the principal role of progesterone
appears to be in promoting lobuloalveolar development
in the adult gland (66, 67). Progesterone does not appear
to be necessary for ductal development, which occurs at
adolescence mainly under the influence of estrogen in
combination with pituitary factors, probably PRL and
GH.

1. Mouse. As was previously noted with studies on the
hormonal control of uterine proliferation and differen-
tiation, the immature mouse and the ovariectomized
adult mouse have provided the most extensively utilized
experimental models for studies on the hormonal control
of mammary gland development.

The mammary gland undergoes a series of well-coor-
dinated phases of development which are known to have
differing hormonal requirements. At birth the mammary
epithelium of the female mouse consists of a cord of cells
connected to the nipple at one end and terminating in a
branched structure at the other. Development to this
stage is thought to be determined predominantly by
mesenchymal influences and may be independent of
hormones. These immature ductal cells have, however,
differentiated to the extent that they can synthesize
casein under appropriate hormonal stimulation in vitro
(66).

The next phase of mammary development, which oc-
curs at sexual maturation (4-7 weeks of age in the
mouse), involves the rapid growth of ducts to yield a
characteristic tree-like morphology as a consequence of
intense mitotic activity in the end buds of these ducts
(68-70). The cap cells of the end bud are considered to
be stem cells giving rise to myoepithelial and perhaps
luminal epithelial cells (70). A minimal hormonal re-
quirement for ductal development in most species ap-
pears to be estrogen and either PRL or GH (66). Little
alveolar development occurs at this time.

The last major phase in mammary gland development

in the mouse occurs at pregnancy with the development
of lobuloalveolar structures which fill the interductal
spaces. Lobuloalveolar growth in the ovariectomized,
hypophysectomized, adrenalectomized adult mouse re-
quires estrogen, either GH or PRL, and progesterone
(66). Thus the major difference between stimulation of
ductal and lobuloalveolar cell proliferation is the addi-
tional requirement for progesterone in the latter cell type.

Significant new information on the role of estrogens
and progesterone in ductal and alveolar cell proliferation
has been forthcoming from recent studies in mice (71-
73). In a study designed to test whether the known effects
of estrogen on ductal development (74) were mediated
by a direct action on the mammary gland, young ovari-
ectomized mice were treated with implants of estradiol
directly into the gland (71). This resulted in end bud
development in the vicinity of the implant but not else-
where, indicating that the effect was mediated locally.
Furthermore, the effect was blocked by the coimplanta-
tion of an antiestrogen, demonstrating that the effect
was probably ER-mediated. Analysis of ER distribution
using steroid autoradiography revealed ER in the luminal
cells of the end bud, in ductal epithelium, and in stroma
adjacent to the ducts but not in the rapidly proliferating
cap cells. It was concluded that estrogen acted in con-
junction with nonepithelial target cells to stimulate DNA
synthesis in the end buds (71). The conclusion that
estrogen may act via stromal intermediaries is compati-
ble with in vitro studies showing that estrogen was mi-
togenic to cultured mammary epithelium only when the
latter was cocultured with fibroblasts (75, 76).

Similar studies by Haslam (72), in which estradiol
pellets were implanted sc (systemic) or within the mam-
mary gland (local), demonstrated differential responses
in epithelial DNA synthesis between immature and ma-
ture mice. The data indicated that estrogen acted locally
to increase end bud growth in the immature gland, in
agreement with the previous study (71), and systemically
in the mature gland where the effect was to stimulate
ductal side-branching. One potential explanation for
these differences is that the epithelium in the immature
mammary gland end bud is developmentally unique and
may exhibit hormonal responses not shared by the adult
gland. Furthermore, the systemic effect in the mature
gland may be due to estrogen effects on PRL secretion
and action, since it has long been known that estrogen
is ineffective in restoring mammary growth in the ovari-
ectomized-hypophysectomized animal (77), while PRL
alone or in synergy with progesterone stimulates mam-
mary epithelial cell growth in vitro (78).

Having established differential regulation of cell pro-
liferation in the epithelium of immature and adult mouse
mammary gland, Haslam (73) studied progesterone ef-
fects on mammary epithelial DNA synthesis under the
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same experimental conditions. In the immature animal,
progesterone alone had no effect on end bud epithelium,
and estradiol alone resulted in a 3-fold increase in label-
ing index, a value that was slightly reduced in animals
receiving both hormones. DNA synthesis in the ductal
epithelium was affected differently; both estradiol and
progesterone alone stimulated proliferation, but with
different time courses, and at some times progesterone
appeared to markedly inhibit the estrogen-induced re-
sponse. In the ductal epithelium of the mature gland,
progesterone and estradiol alone both stimulated prolif-
eration, though progesterone was considerably more ef-
fective. Administration of the two steroids together re-
sulted in a marked synergistic, although transient, effect
in the mature gland, which was attributed in part to the
ability of estrogen to increase PR and progestin respon-
siveness. These studies were interpreted as suggesting
that in the mature mouse progesterone, rather than
estrogen, has a major role in promoting DNA synthesis
and epithelial cell proliferation (73). The effects of pro-
gesterone on cell proliferation of the mouse mammary
gland are summarized in Table 4.

2. Experimental mammary tumors. Hormone-dependent
mammary tumors can be induced in rodents by chemical
carcinogens, radiation, and alterations in the endocrine
environment induced by pregnancy, estrogen administra-
tion, and pituitary isografts (reviewed in Refs. 79 and
80). The growth of such tumors is regulated by a number
of hormones, of which estrogen and PRL are considered
to be the most important. The relative contributions of
these two hormones may vary with the model; of the two
most widely studied models in rats, dimethylbenzanthra-
cene (DMBA)-induced tumors are predominantly PRL
dependent (81) while those induced by nitrosomethylu-
rea (NMU) are thought to be more estrogen dependent
(82).

The role of progestins in the control of growth of
rodent mammary tumors has been addressed, but there

TABLE 4. Cell proliferation in the mouse mammary gland

Treatment

Cell type E + P

24 h 48 h 72 h 24 h 48 h 72 h 24 h 48 h 72 h

Immature0

Epithelium
end bud + + + + - - - - + + - -
ductal + + + + + + + + + - + + + - + + + -

Mature"
Epithelium —

Abbreviations are defined in Table 1.
0 Adapted with permission from Ref. 73.

are few data on the actual mechanisms by which proges-
terone controls tumor cell replication. Interestingly, pro-
gesterone has been reported to both stimulate and inhibit
the growth of experimental tumors depending upon the
dose and the experimental preparation. Progesterone
stimulation of growth has been demonstrated in carcin-
ogen-induced and transplantable rat tumors (83-89),
spontaneous mouse mammary tumors of pregnancy (90,
91), and in murine tumors induced by pituitary isografts
(92). Furthermore, in a number of mouse mammary
tumors, including GR/A and TPDMT-4, a combination
of estrone and progesterone either induces tumors or
enhances growth while each agent is ineffective alone
(80, 93). In the well studied DMB A model estrogen alone
or in combination with progesterone sustained growth in
ovariectomized and adrenalectomized rats while admin-
istration of progesterone alone did not (94). More recent
data demonstrate that progesterone can partially reverse
the effects of the antiestrogen, tamoxifen, on inhibition
of tumor development and growth in the DMBA model
(89).

In contrast, progesterone has also been reported to
inhibit the development of carcinogen-induced mam-
mary tumors. This effect was first described by Huggins
et al. (85) but was complicated by the simultaneous
administration of a pharmacological dose of estrogen.
Further experimentation revealed that the effect of pro-
gesterone was dependent upon the time of administration
relative to the carcinogen [(87, 95), reviewed in Ref. 96]
and that the effect may be related to effects of proges-
terone on mammary gland differentiation. This conclu-
sion has recently been elegantly demonstrated in studies
in which pretreatment of rats with a combination of
estradiol and progesterone, sufficient to induce a highly
differentiated state in the mammary gland, markedly
reduced the ability of NMU to induce tumors (97). Thus,
the protective effect of estradiol and progesterone would
appear to result from the reduction in the number of end
buds, i.e. the sites of rapid cell division and the point of
action of the carcinogenic insult.

A similar protective effect of progesterone was ob-
served with estrogen-induced mammary tumors in ovari-
ectomized W/Fu rats (98). Interestingly, estrogen-in-
duced pituitary tumorigenesis as well as mammary tu-
morigenesis was inhibited by tamoxifen, but the former
was not inhibited by progesterone, indicating that the
protective effect of the progestin was tissue specific and
unlikely to be due to inhibition of estrogen action at the
receptor level. Again, the synergistic effect of estrogen
and progesterone on mammary gland differentiation is a
likely explanation for this result (98).

There is little information on the effects of progester-
one alone on DNA synthesis in mammary carcinoma. A
recent study (99) assessed the effect of progesterone on
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the thymidine labeling index in the MXT transplantable
murine tumor and demonstrated a mitogenic effect sim-
ilar to that observed after estrogen treatment. This ef-
fect, however, was transient and had returned to control
levels after 48 h of progesterone treatment. This may
have been due to the rapid clearance of the progesterone
or to the ability of the steroid to stimulate only a single
round of replication. A further study from the same group
evaluated the effect of estradiol and progesterone in vitro
on the thymidine labeling index in a small series of
canine mammary tumors of mixed histological type. Es-
tradiol was stimulatory in 90-100% of cases while pro-
gesterone induced a significant increase in thymidine
labeling in only 10-30% of tumors. Response was not
correlated with ER and PR status (100). More detailed
studies are urgently needed to ascertain the true effects
of progesterone alone and in combination with other
hormones, particularly estrogen and PRL, on cell prolif-
eration in experimental mammary tumors.

3. Human breast. The human breast is known to respond
to the fluctuations in serum hormone levels during the
menstrual cycle with cyclical changes in breast volume
and cellular morphology. Contributing to these effects
are cyclical changes in the mitotic activity of the epithe-
lium, which have been measured either by direct counting
of mitoses or by [3H]thymidine incorporation. DNA syn-
thesis measured by the latter technique in two groups of
patients was high in the early follicular phase; it then
decreased in the late follicular phase only to markedly
increase again in the latter part of the secretory phase,
reaching a maximum in the last 6-8 days of the cycle
(101-103). In the breast epithelium, the highest prolif-
erative activity was noted in the intralobular terminal
ducts (104). Studies in which mitoses were evaluated
histologically showed that both mitosis and cell loss
through apoptosis varied in a cyclical manner during the
cycle, with mitoses clearly being maximal on days 23-26
(53,105,106), although there was variation in the ability
to detect mitoses in the early follicular phase.

Increases in DNA synthesis in the secretory phase
have been consistently observed in all studies, but the
evidence that there is increased DNA synthesis in the
follicular phase has been conflicting.

Several explanations have been advanced for this var-
iability including: differences in the sensitivities of the
methods used to measure mitosis, technical limitations
of the in vitro [3H]thymidine incorporation method, lim-
itations in the accurate dating of menstrual cycle day,
and differences in the breast tissue adjacent to the nor-
mal sections selected for study. The first two issues are
inherently problematical and will not be discussed fur-
ther. However, difficulties in accurately dating breast
samples with respect to stage of the menstrual cycle are

generally acknowledged, due to individual fluctuations
in cycle length and lack of well-defined histological mark-
ers analogous to those used for dating the endometrium.
Furthermore, most of the studies reported to date have
used normal breast tissue obtained from women undergo-
ing biopsies, mammoplasties, or mastectomies for a num-
ber of indications, and the normal tissue examined was
therefore potentially adjacent to abnormal regions, which
may have influenced proliferative behavior in the re-
mainder of the breast including the normal regions stud-
ied. These issues were addressed in one study, which
used autopsy material without clinical or histological
evidence of breast abnormality, and dated the breast
samples by examination of endometrial samples from the
same subject (53). This study clearly showed that epithe-
lial mitoses were present between days 22-28 of the cycle
and were undetectable at any other time (Fig. 1).

A recent study has confirmed that women with natural
cycles, irrespective of parity, all show maximal epithelial
proliferation in the late secretory phase of the cycle (107).
Parous women using oral contraceptives had a blunted
proliferation profile in comparison, with no marked "late
secretory" peak. However, nulliparous women on oral
contraceptives had persistently greater basal prolifera-
tive activity than women with natural cycles and dis-
played a dramatic increase in proliferation in the equiv-
alent of the late secretory phase of the artificial cycle
(107). The estrogen concentration in the oral contracep-
tive formulation was found to be important, whereas the
progestin concentration was not, and the mean thymi-
dine labeling index increased progressively with increas-
ing estrogen content of the formulation in these nullip-
arous women. The authors suggested that the primary
function of estrogen may be to increase the PR concen-

Epithelial
Mitoses

Serum
Hormones Estradiol

1 14 21 28

MENSTRUAL CYCLE DAYS

FIG. 1. Changes in uterine and breast epithelial mitoses and serum
gonadal steroid hormones during the human menstrual cycle [Adapted
with permission from T. A. Longacre and S. A. Barlow: Am J Surg
Pathol 10:382-393,1986 (53).]
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tration in a dose-dependent manner, assuming that the
lowest administered progestin dose had a maximal effect,
in order to explain the lack of a dose-related progestin
effect. This intriguing suggestion awaits further analysis.
Therefore, the stimulus for this wave of epithelial DNA
synthesis in the late secretory phase of the cycle is
presently unknown. The effect coincides with, or imme-
diately follows, a rise in the serum concentrations of both
estrogen and progesterone, from which the inference can
be drawn that these hormones, alone or in combination,
directly or indirectly, may be responsible.

The potential role of estrogen and/or progesterone in
mediating breast epithelial DNA synthesis has yet to be
investigated directly in humans, but the issue has been
examined using in vitro techniques such as organ culture,
transplantation of normal human breast into nude mice,
and primary cell culture (108-110). The consensus to
emerge from these in vitro studies is that estrogen is
capable of stimulating breast epithelial growth. Proges-
terone stimulated either good (108), modest (110, 111),
or no growth (109) or was growth inhibitory (112). Where
tested, progestins either were (112) or were not (110,
111), able to inhibit the estrogen-mediated effect. How-
ever, several factors, such as the cellular heterogeneity
of the breast epithelium and the presence or absence of
ER and/or PR in cells which demonstrate DNA synthe-
sis, have to be addressed before these in vitro studies can
be extrapolated to the human breast in vivo, and before
any general conclusions can be drawn concerning the
likely mitotic stimulus in the secretory phase of the cycle.
The breast epithelium is composed of ductal, lobular,
and alveolar elements, encased by myoepithelial cells,
and it is likely that these cellular elements respond
differently to growth stimuli, particularly in the various
phases of the cycle. For instance, myoepithelial cells
seldom divide, if at all, once mature (113) and, in addi-
tion, the exact cellular composition and therefore the
likely responsiveness of breast explants after in vitro
culture, or growth in nude mice, has not been described.
It is furthermore unclear which, if any, of the breast
epithelial elements contain receptors for estrogen or
progesterone, and whether these receptors are main-
tained after transplantation or culture, although there is
recent evidence that PR is present in nonmalignant
epithelial cells adjacent to PR-positive carcinoma (114).
Finally, it has yet to be demonstrated that steroid hor-
mones act directly on the human breast epithelium,
rather than through a paracrine mechanism involving
the stromal elements.

4. Human mammary carcinoma. The synthetic proges-
tins, megestrol acetate (MA) and medroxyprogesterone
acetate (MPA), are effective agents in the treatment of
metastatic breast cancer. Response rates similar to those

observed with the antiestrogen tamoxifen (see Refs. 115-
118 and references therein), and similarly predicted by
the presence of ER and PR, are observed. Clinical data
relating objective responses after progestin treatment to
steroid hormone receptor status reveal that, in both ER+
and ER- tumors, the additional presence of PR assures
a significantly greater response to therapy (117, 118).
Despite the widespread clinical use of progestins and in
contrast to their well-defined antiproliferative effects on
normal and neoplastic endometrium, relatively little in-
formation is currently available concerning the molecular
mechanisms of action of progestins as antitumor agents
in breast cancer. Both direct effects on tumor cells (re-
viewed in Section III) and indirect effects on the hypo-
thalamo-pituitary-adrenal axis (Section V.C) have been
implicated.

While the relationship between responsiveness and PR
status might be interpreted as providing support for a
direct inhibitory effect of progestins on tumor cell growth
in vivo, other potential mechanisms need to be consid-
ered. Synthetic progestins, while having high affinity for
the PR, have also been shown to compete for binding to
the GR and androgen receptor. In one clinical study in
which responses to MA treatment were correlated with
different steroid hormone receptors in breast cancer pa-
tients, responsiveness was significantly associated with
high levels of androgen receptor, was weakly related to
GR, and unrelated to ER and PR (119). Furthermore, 7
of the 17 responders lacked detectable levels of PR in
their tumors suggesting that PR may not always be
implicated in the antitumor effects of MA. Interpretation
of these data is complicated by the fact that the levels of
different steroid hormone receptors among human breast
cancer biopsies and cell lines appear to be correlated
(119-121), and this may be due to the coordinated control
of steroid hormone receptor gene expression (121). Under
such circumstances it is difficult to place a mechanistic
interpretation on relationships between receptor levels
and hormone responsiveness.

There have been few studies addressing the effects of
progestins on cell proliferation in human breast tumors
(122, 123). The initial study of Dao et al. (122) revealed
that in 7 of 10 patients treated with a physiological dose
of estradiol plus progesterone, the in vitro thymidine
labeling index rose significantly even though 4 of the 7
responsive tumors lacked ER; PR, status was assessed in
only 4 cases, and, although proliferation increased in 3
of these, all 4 lacked PR. When breast tumors were
removed from patients and the effects of estrogen and
progesterone on the growth fraction assessed in vitro, a
spectrum of effects was observed (123). Estradiol de-
creased the growth fraction in 6 of 7 tumors and in-
creased it in the remaining sample. A similar pattern was
observed when estradiol and progesterone were admin-
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istered together. Dose-response studies on a small num-
ber of biopsies demonstrated variable responses: 4 of 6
tumors treated with progesterone alone had markedly
reduced growth fractions while the other 2 were stimu-
lated; combined treatment with estradiol and progester-
one increased the growth fraction in 4 of 7 cases at low
doses, but treatment with 10- to 100-fold higher concen-
trations of both steroids invariably led to a decrease in
proliferation. Again, responsiveness was unrelated to
steroid hormone receptor status (123). Interpretation of
these in vitro data was complicated by the presence of
10 yug/ml insulin, a potent mitogen for breast cancer
cells, in the culture medium. On face value, these studies
call into question the role of PR in mediating the re-
sponsiveness of human breast cancers to progestin ther-
apy. However, the small number of patient samples in
these studies and the significant limitations, both in the
measurement of PR in the face of high circulating pro-
gestin levels and in the maintenance of stable PR levels
in organ culture of malignant tissue (124), suggest that
these in vitro studies should be interpreted with caution.

The transplantation of breast cancer biopsies or cell
lines into nude mice provides an attractive model for
studying the effects of hormones on breast cancer cell
proliferation in vivo. Unfortunately, there is only one
study describing the effects of progesterone in such a
system (125). Administration of progesterone alone to
nude mice carrying an MCF 7 breast carcinoma did not
stimulate growth. However, progesterone and estrogen
had a synergistic effect on tumor burden, which was
attributed to a decrease in the latency period rather than
an effect on tumor incidence or growth rate.

C. Chicken oviduct

The chick oviduct represents one of the best defined
systems for studying the effects of steroid hormones on
growth and differentiation (126-129). In the immature
chicken, the magnum region consists of a single layer of
columnar epithelial cells seated upon a dense stroma.
After stimulation with estrogen this epithelial layer can
differentiate into three distinct cell types: tubular gland
cells which produce egg white proteins under stimulation
by estrogen and/or progesterone; goblet cells which are
progestin responsive and synthesize avidin when proges-
tin stimulated; and ciliated cells (126-129). Although
this system has been used almost exclusively for studies
on egg white protein gene expression, a number of studies
have addressed the issue of estrogen and progesterone
effects on mitosis. The study that most comprehensively
and clearly defined the effects of progesterone on cell
division in this organ was undertaken by Socher and
O'Malley (130).

A single injection of progesterone to previously un-

treated immature chicks resulted in a 2-fold increase in
the mitotic index of the surface epithelium 12-18 h later.
Mitoses fell below the low, but significant, level in un-
treated chickens at 24 h and further declined to unde-
tectable levels at 48 h. A second injection of progesterone
at 24 h after the initial injection did not result in further
mitoses. These data suggest that progesterone alone is
able to induce a single round of replication in a small
population of immature epithelial cells but thereafter has
no effect on cell division in the magnum. In contrast,
estradiol increased the mitotic index to a 7- to 8-fold
maximum at 18 h, and repeated 24 hourly injections led
to further rounds of replication. It is unclear whether the
progestin-responsive cells are also part of the estrogen-
responsive pool. When estrogen and progesterone were
administered together, the effect, during the first round
of replication, i.e. during the first 24 h, was indistinguish-
able from that with estradiol alone. However, readmin-
istration of this combination at 24 h, in marked contrast
to estradiol alone, failed to induce further mitoses, i.e.
under these circumstances progesterone inhibited the
estrogen-induced replication.

This study (130) also examined the persistence of the
progesterone-induced suppression of mitosis by rechal-
lenging progesterone-treated, or estrogen plus progester-
one-treated, animals with estradiol at 24 h intervals.
These experiments revealed a time-dependent return to
estrogen responsiveness after progesterone-induced
suppression of mitosis, indicating that the ability of
oviduct epithelium to divide was not altered permanently
by progesterone treatment. A similar result was previ-
ously seen in the adult ovariectomized mouse luminal
epithelium (27).

When chickens are treated continuously with estrogen,
the immature magnum differentiates into a series of
tubular gland cells, which demonstrate responses to the
mitogenic effects of estrogen and the antiproliferative
effects of progesterone, identical to those seen in the
surface epithelium. The continued presence of estrogen
maintains a high mitotic index in both cell types, and
this is significantly reduced by administration of proges-
terone. Finally, when oviducts are fully differentiated by
10 daily injections of estrogen then withdrawn from
treatment for a similar period, and the hormone-depleted
animal rechallenged with hormone, estrogen but not
progesterone (in contrast to the situation in the imma-
ture gland), leads to an increase in mitosis. Simultaneous
administration of the two steroids results in complete
attenuation of the estrogenic effect by progesterone.
Thus, while progesterone demonstrates some mitogenic
activity in the immature magnum, once the organ has
differentiated progesterone can no longer stimulate mi-
tosis (130). The effects of estrogen and progesterone on
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the chicken oviduct epithelium are summarized in Table
5.

Several later studies addressed the effect of progester-
one on various aspects of estrogen-induced DNA synthe-
sis and cell replication. The estrogen-induced increase in
ornithine decarboxylase activity, an enzyme involved in
polyamine synthesis and cell replication, was inhibited
by simultaneous administration of progesterone, while
progesterone alone had a modest effect on activity (131).
Studies on DNA polymerase a activity illustrated that
progesterone initially inhibited estradiol-induced in-
creases in enzyme activity although the effect was rela-
tively short-lived, i.e. approximately 6 h. Thereafter, the
activity in animals receiving both steroids began to in-
crease at a rate greater than that after treatment with
estrogen alone such that, by 12 to 18 h after progesterone
treatment, enzyme activity was greater in the oviduct of
animals receiving both steroids (132).

The studies discussed in this section illustrate that
antagonistic or synergistic effects of progesterone on
estrogen-induced proliferation can be obtained depend-
ing upon the temporal relationship of administration of
the two compounds; this principle further complicates
the interpretation of progestin effects on cell prolifera-
tion.

III. Effects of Progestins on Cell Proliferation in
Vitro

The effects of progestins on cell proliferation in vitro
have been investigated in a number of different experi-
mental systems including organ culture of uterus and
mammary gland, cell culture of normal breast and uterine
epithelium, benign breast tumors, and established cell
lines of breast and endometrial carcinoma.

A. Organ culture

Early studies on human endometrial tissue in organ
culture were not extensive but defined the inhibitory
effect of progesterone on DNA synthesis in both normal
(49) and neoplastic (62) tissue. Subsequent studies on
primary cultures of rat (133) and rabbit (134-137) en-
dometrium supported a primary growth- inhibitory effect

TABLE 5. Cell proliferation in the chicken oviduct epithelium

Developmental

state

Immature
Differentiated

Single

++++
++++

E

Re-
peated

++++
++++

Treatment

P

Single
peated

+ -
ND

E

Single

++++
ND

+ P

Re-
peated

+
ND

Abbreviations are defined in Table 1.
0 Adapted with permission from Ref. 130.

of progesterone on uterine epithelial cell proliferation in
vitro. While the data with rat uterine cultures, demon-
strating progesterone inhibition of the rate of epithelial
cell proliferation with little effect on stromal cells, tended
to confirm earlier observations in vivo, the inhibitory
effect of progesterone on proliferation of rabbit uterine
cultures was markedly different from the stimulatory
effects observed in vivo (Section II.A.2 and Refs. 42-44).
Progesterone antagonized proliferation induced by the
synthetic estrogen, diethylstilbestrol, and led to the for-
mation of increased numbers of large, multinucleated
cells typical of decidualization (134). Both hormones
appeared to have synergistic effects on protein synthesis
as had been demonstrated in mouse uterus in vivo (31).
The same authors suggested that progesterone decreased
cell proliferation rates both by increasing the proportion
of Go cells and increasing the lengths of both Gi and S
phase in the population that continued to cycle (135).

In agreement with the in vivo effects of progesterone
on the mammary gland (Section II.B), in vitro culture of
rat mammary gland explants in the presence of proges-
terone led to stimulation of the labeling and mitotic
indices with marked proliferation of ductal epithelium
and moderate development of lobular structures. The
concomitant addition of progesterone and PRL induced
further hyperplasia of ductal epithelium and considerable
lobuloalveolar development (138). Studies with DMBA
tumors in organ culture demonstrated that, in the pres-
ence of insulin, progesterone significantly increased
DNA synthesis in about 50% of tumors. The effect
appeared to be synergistic when PRL was also added. In
some tumors progesterone, in the absence of PRL, in-
duced considerable cellular hypertrophy, and mitoses
were frequently observed; progesterone also appeared to
inhibit PRL-induced secretory changes (139). These data
are consistent with the proposed stimulatory role of
progesterone alone, or in combination with other hor-
mones, e.g. estrogen and PRL, in mammary gland epi-
thelial cell proliferation in vivo.

B. Cell culture

1. Inhibition of growth by progestins. The majority of data
relating to the effects of progestins on cell proliferation
in vitro have been derived from studies with tumor cell
lines. Many of the published studies employing these
systems appear to lack an appreciation of the principles
of cell proliferation kinetics. Effects of a given agent on
cell proliferation are best studied when the growth rate
of the control population is in steady state, i.e. when cell
numbers increase exponentially with time. There are
very few published studies in which compliance with this
minimal requirement is demonstrated. Many either fail
to present growth curves, present such data as linear
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(rather than logarithmic) plots of cell number against
time, or present cell number relative to control after an
unknown number of control doubling times.

While this does not preclude making statements to the
effect that the treatment affects cell number, it does
preclude any conclusions about relative growth rates,
thereby hampering the formulation of rational hy-
potheses on mechanisms of growth inhibition. Where
only a small fraction of the population is actively divid-
ing, extended exposure times may be necessary before
changes in growth rate will significantly affect cell num-
ber. Furthermore, it is important to appreciate that even
when the population growth rate is high, apparent sen-
sitivity is greatly influenced by the duration of the ex-
periment relative to the cell cycle time of control cells,
particularly where the agent has cell cycle-specific ef-
fects. In the first cell cycle of exposure, much of the
population may be effectively insensitive by virtue of
their position in the cell cycle, and these cells will con-
tinue past mitosis, until they reach the point of sensitiv-
ity. In the case of an agent which acts in early Gi, as
suggested for progestins by our own data (140), cell
numbers may almost double before there is any reduction
in the cellular birth rate. This is illustrated in Fig. 2
where the sensitivity of T-47D cells to the synthetic
progestin, MPA, is recorded after 1, 2, and 4 cell cycle
times of the untreated control population.

Even in these exquisitely sensitive cells, no change in
the relative cell number can be detected until the control
cells have completed more than one round of replication,
and the apparent sensitivity is markedly influenced by
the time of exposure. When it is appreciated that in most
experiments demonstrating stimulatory effects of pro-
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FlG. 2. Effect of duration of exposure of breast cancer cells to progestin
on apparent sensitivity of growth regulation. Viable cell counts of T-
47D cells treated with the progestin MPA while in exponential growth
phase are expressed as a percentage of the cell count in vehicle-treated
control flasks. Cells were harvested after approximately 1 (•), 2 (•) or
4 (A) population doublings of control cells.

gestins on breast cancer cell growth in vitro, control cells
have been manipulated to grow at very slow rates, i.e.
with doubling times of 4-7 days, the importance of ex-
perimental design to the ultimate interpretation of the
data is apparent.

Despite these potential limitations to the interpreta-
tion of some published data, there is now overwhelming
evidence that progestins can directly influence the
growth of target cells in vitro. Although the most detailed
data come from studies on human mammary carcinoma
cell lines, particularly MCF 7 and T-47D (140-153),
similar observations have been made using normal breast
epithelial cells (112) and endometrial carcinoma cells
(154).

The first data on the effects of progestins on breast
cancer cell proliferation in vitro were obtained with an
estrogen-responsive clone of T-47D cells and the anties-
trogen resistant variant of MCF 7, R 27, in which the
growth-inhibitory effects of the synthetic progestin, R
5020, were apparent only in the presence of growth
stimulation by estradiol (141). The effect was not ob-
served with dihydrotestosterone or dexamethasone, sug-
gesting that R 5020 acted on cell proliferation via PR.
The authors concluded that R 5020 was acting as an
antiestrogen, although the observation that it could in-
hibit the tamoxifen-resistant R 27 cell line suggested
that the two types of antiestrogens, i.e. progestins and
nonsteroidal antiestrogens, acted through different
mechanisms (141). It was also proposed that inhibition
of the synthesis and secretion of estrogen-induced growth
factors might account for the antiproliferative effect,
since the same authors had previously reported on the
secretion of specific estrogen-induced proteins by these
cells and inhibition of their secretion by progestins (155).
These direct growth-inhibitory effects of progestins on
human cells in culture have now been confirmed in a
number of studies (140, 142-150); others, however, have
reported no effect (156-158) or a growth-stimulatory
effect of progestins (146, 149,151-153).

The question of whether or not progestins can only
inhibit estrogen-induced cell proliferation has remained
controversial since the original report of Vignon et al.
(141). There is, however, convincing evidence that this
is not the case. Horwitz and Freidenberg (144), using the
antiestrogen resistant, ER-negative T-47Dco cell line,
demonstrated profound growth inhibition by R 5020.
Similarly, Terakawa et al. (154) showed that an endo-
metrial carcinoma cell line, with undetectable ER but
significant quantities of PR, was growth inhibited by R
5020. A likely explanation for the apparent discrepancy
relates to the cell growth conditions employed in the first
study (141) and perhaps the level of PR, and its regula-
tion, in the different cell lines employed (141, 144, 154).
In the data presented by Vignon et al. (141) on T-47D
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cells in the absence of estrogen, the cell numbers in R
5020-treated cultures were lower than those in control
flasks at each concentration above 0.1 nM, although this
was not statistically significant. More prolonged treat-
ment may have resulted in more marked suppression of
growth. Furthermore, no data were presented on the
estrogen inducibility of PR in these cells (141). If, unlike
the cell lines employed by Horwitz and Freidenberg (144)
and Terakawa et al. (154), the cells employed by Vignon
(141) required estrogen stimulation to attain significant
levels of PR, this could explain the greater sensitivity of
estrogen-treated cells to the growth-inhibitory effect of
the progestin. Although a number of studies clearly dem-
onstrate that sensitivity to progestin-induced growth
inhibition is modulated by estrogens, it is now apparent
that as long as PR is present progestins can be active in
the absence of estrogen (140,144, 154). Further convinc-
ing evidence of progestin inhibition of cell proliferation
in the absence of estrogen is apparent in studies from
this laboratory, in which insulin-stimulated growth of T-
47D cells in which PR is constitutively expressed, in a
chemically defined, serum-free medium, devoid of phenol
red, was markedly inhibited in a time- and concentra-
tion-dependent manner by the synthetic progestin ORG
2058 (159).

That the growth-inhibitory effects of the synthetic
progestins, R 5020, MPA, and ORG 2058, are mediated
via PR has been supported by several studies (140-142),
although it has been suggested that part of the MPA
response in MCF 7 cells is mediated via the GR (149).
While it is conceivable that the known glucocorticoid
activity of some synthetic progestins could lead to some
effects being mediated via GR, this is not the case in T-
47D cells, which have high levels of PR and in which
steroid specificity has been studied in detail. In these
cells steroid-induced growth inhibition has been con-
vincingly demonstrated to be confined to progestins and
high concentrations of androgens, with glucocorticoids
and estrogens having no effect (140). Furthermore, ER-
human breast cancer cell lines, which express higher
levels of GR than ER+, PR+ lines (121), fail to respond
to the growth-inhibitory effects of MPA (140) while
ER-, PR- but AR+, GR+ NMU rat mammary tumor
cells were insensitive to growth inhibition by R 5020
(141).

While these in vitro data provide good evidence that
the majority of growth-inhibitory effects of progestins
are mediated via PR, the presence of PR in human breast
cancer cell lines does not ensure a growth-inhibitory
response to MPA (140). Investigation of the sensitivity
of 5 PR-positive cell lines to MPA demonstrated that
there was a greater than 2,000-fold range in sensitivity
despite only a 20-fold difference in PR levels and fur-
thermore, sensitivity was not in the same hierarchy as

PR concentrations. One possible interpretation of this
anomaly is that there are aberrations in receptor function
or postreceptor events in some of these cell lines. Another
interesting observation to emanate from this study was
that the maximal level of growth inhibition induced by
MPA varied from 70% for T-47D cells to 20% in ZR 75-
1 cells (140). These data provide evidence that progestin-
controlled pathways account for only part of the overall
control of proliferation of these cells since proliferation
continues, albeit at a reduced rate, in the presence of
progestins. Furthermore, they confirm the view that
antiestrogens and progestins inhibit growth by different
mechanisms (11, 140), since in all the cell lines studied,
with the exception of T-47D, maximal responses to an-
tiestrogens were significantly greater than maximal in-
hibitory responses to progestins (140, 160).

There is only one published study reporting the cell
kinetic basis of progestin-mediated growth inhibition in
vitro (140). Studies on changes in cell cycle phase distri-
bution and Gx exit kinetics after treatment with MPA
were undertaken with both T-47D and MCF 7 cells.
Treatment of exponentially growing T-47D cells resulted
in a redistribution of cells between the G0/Gi and S
phases of the cell cycle. At a maximal growth-inhibitory
concentration, i.e. 10 nM in T-47D cells, no effect was
observed during the first 12 h. The redistribution be-
tween cell cycle phases was half-maximal at 18 h and
maximal at 24 h, with an apparent slight recovery at 48
h (Fig. 3). A half-maximal effect at 18 h indicated that
the earliest mean point of action of the progestin was 18
h before cells enter S phase. The point of action of the
hormone, however, must be within Gi phase since pro-
gression through S and G2 + M phases was unaltered
during the first 12 h of treatment as evidenced by con-
stant cell cycle phase distribution over this period. That
the effect is early in Gx phase is supported by data on
cell growth which showed insignificant differences be-
tween control and drug-treated cell numbers after 24 h,
indicating that almost all cells could complete the first
replication cycle after administration of the drug (Fig.
2). Since the mean length of Gi phase in these cells was
13.5 h, there must have been a delay of at least 4.5 h
between addition of progestin and the mean point of
action on cell cycle progression (140). This may represent
the time required for PR-mediated modulation of gene
transcription to be reflected in the production or deple-
tion of specific gene products controlling cell cycle pro-
gression in this cell line. In this regard, it is interesting
to note that progestin inhibition of the transcription of
its own receptor is not apparent until 3 h after treatment
(161).

After the initial redistribution of cells between G0/Gi
and S phases of the cell cycle and the decline in growth
rate, a concentration-dependent recovery was apparent.
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FIG. 3. Effect of the progestin treatment of breast cancer cells on cell
cycle kinetic parameters. T-47D cells treated with MPA were harvested
at the indicated times and cell cycle phase distribution determined by
analytical DNA flow cytometry. A and B, Changes in G0/Gi and S
phases after treatment with 10 nM MPA. C, After 24 h pretreatment
with MPA, T-47D cells were additionally exposed to ICRF 159, an
inhibitor of cytokinesis. The subsequent rate of decrease in percent
Go/Gi phase cells is shown and indicates the rate of efflux of cells from
Gi phase. [Data are redrawn with permission from R. L. Sutherland et
al.: Cancer Res 48:5084-5091,1988 (140).]

This was most convincingly illustrated in studies on Gi
exit kinetics of T-47D cells after treatment with various
concentrations of MPA, in which the drug was shown to
cause a transient but complete arrest of cell cycle pro-
gression, the duration of which varied with the concen-
tration of MPA. After cell cycle arrest there was a
resumption of cell cycle progression, the rate of which
was dependent upon the concentration of MPA (Fig. 3).
These experiments were conducted in the continuous
presence of the drug, MPA having been administered
once at 0 h with no subsequent medium change, and gave
a somewhat different result (140) to that observed after
transient exposure to R 5020 (144). The latter experi-

ment involved treatment of T-47Dco cells with a 1 h
pulse of 100 nM R 5020 followed by washing of the
monolayer and reincubation in hormone-free medium.
While such a treatment might not be expected to com-
pletely deplete the cells of R 5020 due to its high affinity
for PR and its low level of metabolism, it is likely that
the majority of drug was removed. Under these circum-
stances cell growth was initially arrested, but thereafter
the growth rates of treated and untreated cultures were
indistinguishable (144). Such data imply that the de-
creased cell cycle progression observed in our experi-
ments after recovery from the initial arrest by MPA was
due to the persistence of MPA and its action after
continuous exposure to the drug. Further evidence that
short term exposure of T-47D cells to progestins can
result in marked effects on progestin responses, e.g.
growth rate and expression of the epidermal growth
factor receptor (EGF-R), comes from our published (162)
and unpublished data with the rapidly metabolized nat-
ural progestin, progesterone.

Although in all the other progestin-responsive cell
lines studied (BT-474, MCF 7, MDA-MB-361 and ZR-
75-1) the changes in cell cycle phase distribution were
similar to those reported for T-47D, relatively detailed
studies were only undertaken with MCF 7 in which
changes in cell cycle phase distribution were not com-
plete within the first cell cycle of drug exposure but
increased with increased time of exposure. Since growth
experiments showed that MCF 7 cells were not only
significantly less sensitive to progestins but that the
maximal response was also diminished, the results might
be explained by the fact that a much smaller proportion
of the total population was sensitive to MPA and that
the effect was maximized by multiple exposure at the
point of sensitivity (140).

2. Stimulation of growth by progestins. In agreement with
the known stimulatory effects of progesterone on normal
and neoplastic rodent mammary gland in organ culture,
similar responses have been observed in cell culture.
When 13762NF rat mammary tumors were cultured in
collagen gels under serum-free conditions, but in the
continuous presence of insulin, progesterone synergized
with both EGF and PRL to promote growth. Adminis-
tration of progesterone alone had a modest effect on
growth (163). Similar effects were noted when NMU-
induced tumors were grown in a soft agar clonogenic
assay. Both progesterone and R 5020 were stimulatory,
and part of this effect was attributed to progestin-in-
duced autocrine growth factor production by these tumor
cells (164, 165).

There are also recent reports demonstrating increases
in cell number after progestin treatment of breast cancer
cells (146,149,151-153). In several cases the cells under
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study had previously demonstrated resistance to the
growth inhibitory effects of progestins in vivo or in vitro
(146, 149, 151). However, similar data were derived from
the T-47D cell line which has been the source of much
of the data on the growth-inhibitory effects of progestins.
One of the most interesting aspects of the data presented
to date is that, while the stimulatory effect on T-47D
cells is clearly time- and progestin concentration-de-
pendent, the maximal increase in cell number is never
greater than 2-fold, which is markedly less than the 7-
fold increase observed with estradiol (153). Interestingly,
R 5020 partially inhibited the estrogen-induced prolif-
erative response under the same experimental condi-
tions, and this inhibitory effect was augmented by the
simultaneous addition of both R 5020 and hydroxyta-
moxifen (153). These data confirm both a predominantly
inhibitory role for progestins in estrogen-induced prolif-
eration and the independent actions of progestins and
nonsteroidal antiestrogens on estrogen-induced growth
of breast cancer cells.

Although no data have been presented that provide a
mechanistic explanation for the progestin-stimulatory
effect, Moore and associates (152, 153) have attributed
the ability to detect this phenomenon to the absence of
phenol red, a known estrogen agonist, from the culture
medium with the concurrent loss of progestin antago-
nism of estrogen-induced proliferation. Another likely
contributing factor is the ability of these investigators to
decrease the growth rate of their control cells to a level
markedly below that observed under normal culture con-
dition. This was probably attained by a combination of
removal of phenol red from the medium, the use of
charcoal-treated fetal calf serum devoid of steroids and
some growth factors, inoculation of experimental cul-
tures at relatively high cell number from confluent stock
flasks, and frequent medium changes, which would de-
plete the cultures of autocrine growth factors produced
by the cells themselves (152, 153). A likely consequence
of these manipulations is an increase in the proportion
of noncycling or Go cells.

Recent unpublished data from our laboratory may shed
further light on this stimulatory effect. When experi-
ments of the type described in Fig. 3 were undertaken in
a serum-free, phenol red-free, chemically defined me-
dium and the T-47D cells stimulated to grow with insulin,
ORG 2058 inhibited cell growth in an apparently analo-
gous manner to that observed with MPA in medium
supplemented with fetal calf serum and phenol red. How-
ever, unlike the situation depicted in Fig. 3, the progestin
caused an initial depletion of Go/G]. phase cells and a
transient increase in S phase cells (Fig. 4), a result
compatible with a progestin-induced increase in the rate
of progression through Gx phase. This synchronous peak
of cells, which reached a maximum in S phase at 12 h,
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FlG. 4. Changes in cell cycle phase distribution and the expression of
a-TGF, EGF-R, and ER after progestin treatment. T-47D cells were
treated with 10 nM ORG 2058 and harvested at the times indicated. A
and B, Changes in S and G2 + M phases after ORG 2058 treatment
of T-47D cells in insulin-supplemented serum-free medium. C, a-TGF
and EGF-R mRNA levels measured by Northern analysis. D, ER
mRNA and ER protein levels assessed by Northern blot and radioligand
binding analyses.

progressed through the cell cycle being apparent in G2 +
M phase at 18 h after treatment (Fig. 4B). After 12 h,
the proportion of cells in S phase fell rapidly as the
previously reported inhibitory effect was manifested.
Thus, under experimental conditions in which the
growth rate of control cells was slightly slower than in
the presence of fetal calf serum, progestin appears to
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have two distinct effects in cell cycle progression. These
are an initial stimulatory effect which appeared to result
in a transient shortening of Gi phase, allowing a cohort
of cells to transverse the cell cycle at a greater than
normal rate, and a later inhibitory effect resulting from
arrest and/or delayed progression through Gx phase. The
potential mechanisms responsible for these two effects
will be discussed in Section V.B.

IV. Progesterone Receptor and Molecular
Mechanisms of Progestin Action

Irrespective of the final molecular mechanisms
through which progestins control proliferation, the first
event in progestin action involves its interaction with
the intracellular PR. With the recent cloning and iden-
tification of functional domains within the steroid/thy-
roid hormone family of transcriptional activators, the
structure of the PR is now being defined as are the
mechanisms by which it controls gene transcription.
Since these processes are fundamental to an understand-
ing of progestin action on any cellular parameter the
current status of this field is summarized.

A. PR: structure and regulation

The PR is a member of a gene superfamily of trans-
acting transcriptional factors now known to contain re-
ceptors for steroid hormones, thyroid hormones, and
retinoic acid as well as other known transcription factors
and proteins of unknown function. Members of this
family share several common features which include a
distinct structure characterized by a poorly conserved N-
terminal region, a highly conserved cysteine-rich DNA
binding domain, and a conserved hormone binding C-
terminal domain. The structure of the gene superfamily
has been the subject of several recent reviews (166-168).
PR has been cloned from the chick oviduct (169, 170),
the rabbit uterus (171), and human breast cancer cells
(172). The chromosomal PR gene structure has been
elucidated in the chicken to be a single copy 38 kiloba-
sepair gene composed of 8 exons, which code for the
functional domains of the receptor molecule (173). The
human PR gene has been mapped to chromosome 11
(174,175).

The PR is unusual among steroid hormone receptors
in being detectable as 2 proteins of dissimilar mol wts
(designated B, 100-120 K; and A, 79-94 K). The smaller
protein arises in the chicken when translation is initiated
from an internal translation initiation site (176-179).
The functional consequences of N-terminally truncated
chicken PR proteins have been examined, and the N-
terminal region of chicken PR has been implicated in
specifying both transactivational efficiency (176) and
specificity (180). Both the rabbit and human PR se-

quences also contain a second methionine residue, 165-
166 residues from the initiation site (171, 172), although
there is yet no evidence that internal initiation is respon-
sible for the formation of the A protein in the human
and rabbit. Transcription/translation in vitro of comple-
mentary DNAs (cDNAs) containing the coding region of
rabbit or human PR resulted in the detection of the B
protein as the predominant product (181). This sup-
ported previous evidence that posttranslational proteol-
ysis was responsible for A formation in the rabbit (182,
183) but did not explain the consistent detection of both
B and A in the human (184-187). In relation to this, it
has been shown that the 5' untranslated sequence of the
cDNA directs the relative amounts of the chicken B and
A proteins synthesized (178). Presence of the 5' leader
sequence resulted in the detection of approximately equal
levels of B and A proteins, whereas deletion of this
sequence resulted in the B protein being the predominant
product detected. It is perhaps interesting to note that
the constructs used to demonstrate that the B protein
was the predominant product of in vitro transcription/
translation of rabbit and human PR cDNA contained
the coding region but did not contain the entire 5'
untranslated sequence (181).

The PR is under the dual control of estrogen and
progestin, which act sequentially to regulate the cellular
concentration of PR and therefore the likely cellular
responsiveness to progestins. The receptor is increased
by estrogen in most target cells and tissues, due to an
estrogen-mediated increase in PR mRNA levels (169-
171,188) and increased PR protein synthesis (189). The
higher mol wt B protein is detectable on denaturing
analysis as a series of 3 closely migrating mol wt isoforms,
2-4 K apart. These isoforms appeared sequentially in the
nascent PR protein upon exposure to estrogen (190,191)
due to posttranslational modification by phosphorylation
(185, 191-196). This initial phosphorylation is accom-
panied by a second round of phosphorylation upon pro-
gestin binding. Although the second, ligand-mediated,
phosphorylation step has been correlated with the onset
of progestin action, the role of the initial phosphorylation
step is still unclear. However, recent studies have shown
that PR postulated to lack the initial phosphorylation is
able to bind to its progestin ligand and to specific hor-
mone response elements (191, 197), but whether the
initial phosphorylation is necessary for PR to activate
transcription has yet to be determined.

Many physiological situations in which serum proges-
terone levels are elevated, such as during the luteal phase
of the human menstrual cycle or during progestin treat-
ment of postmenopausal patients with carcinoma of the
uterus or breast, are associated with markedly reduced
levels of cellular PR. The decrease in the progestin
binding capacity measured after progestin exposure has
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been shown to result from a decrease in the PR protein
concentration and half-life, and a down-regulation in PR
mRNA concentration (188, 189, 198, 199). Progestin
treatment of T-47D cells results in a rapid loss of PR
protein and mRNA, which both reach their nadir 12 h
after treatment (161). While the effect of progestins on
PR mRNA levels was not detectable until 3 h after
exposure to this agent, effects on the PR protein were
evident much sooner than this (161). The evidence that
progestin effects on the PR protein precede any detect-
able decrease in the level of PR mRNA suggests that the
protein may participate directly in the regulation of its
own mRNA levels, either by binding directly to negative
response elements in the promoter region of the PR gene
or by stimulating the synthesis of an unknown regulatory
protein that would inhibit transcription of the PR gene.

The generally accepted dogma that progestins reduce
cellular levels of PR is likely to be an oversimplification
however. The advent of monoclonal antibodies against
PR enabled cell-specific PR distribution to be deter-
mined. Immunohistochemical evidence shows that
stromal and myometrial PR levels in the human uterus
persist in the face of increasing luteal progesterone con-
centrations (56, 200, 201), consistent with the observa-
tion that these cells maintain sensitivity to progestins.
There are also tissue-specific differences in the ability of
progesterone to reduce PR concentrations (202, 203),
and there is evidence that the levels of mouse mammary
gland PR decrease with increasing tissue differentiation
(204). Furthermore, sustained progesterone exposure has
been associated with maintenance or even increases in
cellular PR levels (205-207). Clearly, progestin regula-
tion of PR levels is likely to vary among cell types,
between species, and more importantly in different phys-
iological situations in order to regulate cellular sensitivity
to progestins.

B. Molecular mechanisms of progestin action

Steroid hormone receptors bind to specific upstream
sequences [hormone response elements (HRE)] in order
to regulate transcription of hormone-sensitive genes. The
present state of knowledge on how PR interacts with its
cognate HRE to mediate progestin action has been re-
cently reviewed (208, 209) and will be summarized
briefly. The PR was first shown to stimulate RNA syn-
thesis in the chick oviduct, in which the stimulatory
effects of progesterone on the synthesis of egg white
proteins such as ovalbumin, conalbumin, and ovomucoid
were well known, and binding sites for PR in several
genes including chicken lysozyme were defined (210-
214). It has been postulated that the function of ligand
binding to PR is to increase the affinity of human PR
for its HRE, and thereby to increase the specificity of

transcriptional activation (215, 216). These data followed
earlier studies which showed that PR was able to bind
in a sequence-specific manner to the uteroglobin gene
independently of the presence of progestin (217), and
that PR bound to the anti-progestin RU 38486 (RU 486)
was able to inhibit progestin-mediated transcriptional
activation by putative competition at the HRE (218). In
contrast, in vitro measurement of chicken PR affinity
for its HRE showed only a minor hormone-induced al-
teration, insufficient to explain the profound effect of
PR on gene transcription (219). Recent data have shown
that PR mutants truncated in the ligand binding domain
possess ligand-independent transactivational capacity,
but that the magnitude of transactivation was dependent
on the amount of mutant expressed and on the cell type
transfected, and that its effectiveness never matched that
of the wild type receptor (220, 221).

Recent studies have shown that the same 15 base pair
HRE sequence can mediate both progestin and glucocor-
ticoid induction of gene expression (222), suggesting that
progestins and glucocorticoids acting through their re-
spective receptors could activate gene expression by in-
teracting with the same DNA sequences. This was dem-
onstrated when transfection of the PR gene into previ-
ously PR-negative cells conferred progestin inducibility
on endogenous glucocorticoid-regulated genes (223).
"Cross-talk" of receptors at the HRE level has now been
widely demonstrated for progestin-, glucocorticoid-, and
androgen-responsive elements, and there is evidence of
close similarity between these HREs and estrogen-re-
sponsive elements (224, 225). The way in which steroid-
specific gene activation takes place in the face of such
close similarity between HRE is one of the unanswered
questions in this area, but there is evidence that the same
HRE behaves differently in different cells with regard to
its ability to modulate promoter function (220, 226) and
presumably that cell-specific factors, as yet undefined,
may play a part in directing steroid modulation of gene
transcription in hormone-sensitive cells. Receptors may
compete with one another for access to functionally
limiting transcription factors, and this competition may
determine the transcriptional outcome of cell treatment
with steroid hormones (226). There is also mounting
evidence that PR and GR interact as dimers with their
HREs, and that HREs can interact synergistically with
one another and with other transcription factors to reg-
ulate gene expression (228-231).

V. Potential Mechanisms of Progestin Effects on
Proliferation

A. Effects on ER levels

In the mammalian uterus, high circulating levels of
progesterone are generally associated with a decrease in
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tissue growth and inhibition of estrogen actions. Recog-
nition of this effect was coupled with the realization that
cellular ER levels tended to be lower in progestin-domi-
nated physiological states such as the luteal phase of the
menstrual cycle. For instance, in the human uterus or
the monkey oviduct, the concentration of ER is higher
in the follicular phase than during the luteal phase of
the cycle. The implications of these observations were
that rising progesterone levels during the luteal phase
inhibited the action of estrogen on the tissue, and did so
by mechanisms that possibly included reducing the cel-
lular concentration of ER.

Experimental support for the view that progestins
regulated the concentration of ER began to emerge in
the early 1970s, in studies on the human, primate, and
rodent. Artificial menstrual cycles were induced in cas-
trated Rhesus monkeys, in which constant estradiol ad-
ministration was supplemented with cyclical progester-
one treatment every 2 weeks for 2 weeks. Interestingly,
the onset of progesterone administration was accom-
panied by a rapid and dramatic decrease in the concen-
tration of ER measured in low salt extracts of the monkey
oviduct. ER levels remained depressed for the duration
of progesterone exposure (232). In the rat uterus, proges-
terone or MPA decreased ER (233-235) and was able to
prevent estradiol-mediated increases in ER in the myo-
metrium (236). It was also shown that in vivo adminis-
tration of the synthetic progestin MPA to women in the
follicular phase of the menstrual cycle resulted in a
decrease in cellular ER, to levels normally found in
secretory tissue (237).

In these early studies, ER measurements were made
in both cytosolic and nuclear extracts from the cell, and
it was generally agreed that estradiol initially caused
depletion of cytosolic ER with a concomitant increase in
nuclear receptor. The decline in cytoplasmic ER was
transitory and was followed by an estradiol-mediated
recovery to levels higher than control. In the rat uterus
it was shown that administration of progesterone in
combination with estradiol resulted in the cytosolic ER
depletion seen with estradiol alone, but in the presence
of progesterone the cytosolic recovery of ER levels was
inhibited (238). The effects of progesterone on the recov-
ery of cytosolic ER were mimicked by the effects on ER
of actinomycin D or cycloheximide given in vivo, which
suggested that recovery of ER was transcriptionally and
translationally mediated and that progesterone inhibited
the process at both levels. These effects were demonstra-
ble when progesterone was given either in conjunction
with or preceded by estradiol exposure, and were absent
if progesterone alone was injected into the immature rat
uterus. An effect of progesterone on nuclear ER was also
noted in the cat and hamster uterus (239, 240). In the
hamster and rat uterus progestins selectively decreased

only ER that was bound to its ligand (241, 242), and this
decrease in the hamster was mediated by an alkaline
phosphatase activity that was stimulated by progestins
(243). The hamster uterus model was used to show that
the continued presence of progestins suppressed ER lev-
els, which recovered progressively when the influence of
progestins was removed (244). Recent studies confirming
this observation in the rat uterus have shown further-
more that nuclear ER levels decreased as serum proges-
terone levels increased (245). The suppressive effect of
progestins on ER was confirmed with the advent of
monoclonal antibodies to ER, which were used to dem-
onstrate recovery of immunoreactive ER in the monkey
uterus after progesterone withdrawal (246). Monoclonal
antibodies were also used to show in the human uterus
that immunoreactive ER levels decreased equally in all
the cell types of the uterus in the luteal, progesterone-
dominated, phase of the menstrual cycle (56).

The largely inhibitory action of progesterone on ER in
the mammalian uterus was in contrast to the effect seen
in the chick oviduct, where progesterone was shown to
have both antagonistic and synergistic effects on ER
(132, 247). Injection of progesterone alone to the estra-
diol-primed then withdrawn chicken resulted in a
marked decrease in total (cytoplasmic + nuclear) ER
levels 3-6 h after treatment, which was followed by a
recovery of ER to levels above control. This was similar
to the effect seen when estradiol was administered alone.
However, when progesterone was administered in con-
junction with estradiol, progestins maintained a reduced
ER level for at least 6 h below the level achieved with
estradiol alone, then allowed ER recovery at a rate and
to an extent often greater than that seen with estradiol
alone. This synergistic action of progesterone and estra-
diol was also noted on ovalbumin and conalbumin syn-
thesis. Removal of progesterone resulted in a gradual
recovery of ER levels in the chick oviduct.

It has only been in the last 3-4 yr that detailed mech-
anistic studies have been carried out on the progestin
regulation of ER. Density shift analysis was used to
demonstrate in hamster decidual cells that progestins
decreased the half-life of ligand-occupied ER from 4 to 2
h, suggesting that progestins increased the degradation
rate of the receptor (244, 248). Progestins also decreased
the rate at which new receptor molecules were synthe-
sized, so it became apparent that cellular levels of ER
fell after progestin treatment due to a combination of
reduced ER synthesis and increased ER degradation.
The mechanisms by which progestins down-regulate ER
in the uterus are being elucidated as a consequence of
these studies. However, there is presently no direct evi-
dence that progestins regulate the concentration of ER
in normal breast cells, despite the fact that progestin
regulation of ER in human breast cancer cells has been
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demonstrated. The reduction in the synthesis of ER has
been shown recently in human breast cancer cells to
result from progestin-mediated decreases in the steady
state levels of ER mRNA (249-252). ER down-regulation
by androgens has also been described in the ZR 75-1
human breast cancer cell line (251). Progestin treatment
of T-47D cells resulted in a rapid decline in the cellular
levels of ER mRNA, which was detectable as early as 1
h after and was maximal 6 h after treatment (252) (Fig.
4). Progestins did not affect the half-life of ER mRNA,
which suggested that the decline in mRNA levels was
due to a progestin-mediated decrease in the transcription
of the ER gene (252). The rapidity with which the effects
of progestins on ER mRNA can be detected suggests
further that the mechanism is likely to involve PR bind-
ing directly to a putative progestin responsive element
in the promoter region of the ER gene.

The demonstration that progestins reduce cellular ER
has generated the hypothesis that this reduction is a
means by which progestins remove the influence of es-
tradiol from the cell and thereby antagonize estrogen-
mediated events including cell proliferation. Preliminary
evidence suggests that progestin treatment alters cell
sensitivity to estradiol (252) and it is noteworthy that
reduction in ER levels preceded progestin mediated in-
hibition of proliferation (Fig. 4). In immature rat uterus,
progesterone pretreatment was able to blunt but not
eliminate the ability of subsequently administered estra-
diol to increase uterine wet weight (238), which supports
the hypothesis that progestins attenuate cell sensitivity
to estradiol by decreasing ER levels. However, more
detailed analysis of this question awaits future experi-
mentation.

B. Effects on growth factors and growth factor receptors

1. Effects on growth factor expression. In human breast
cancer cells in culture and rat uterus in vivo, the prolif-
erative response to estrogen is accompanied by increased
expression of a number of growth factor genes that are
thought to control proliferation via autocrine and para-
crine mechanisms. Growth factors implicated in these
types of responses include EGF, a-and ^-transforming
growth factors (a-and /3-TGF), insulin-like growth fac-
tors I and II (IGF-I and -II), platelet derived growth
factor, and fibroblast growth factor. There is accumulat-
ing evidence that a-TGF and IGF-I promote growth in
these systems while /3-TGF is thought to be a growth
inhibitor (4).

In view of this recent emphasis on the involvement of
autocrine and paracrine growth factors in the prolifera-
tive response to steroids (4,10,11), it is perhaps surpris-
ing that these phenomena have not been investigated

more thoroughly in well characterized in vivo models.
Although mouse uteri have been shown to express mRNA
for prepro-EGF, and expression increased after estradiol
treatment suggesting an autocrine role for EGF in the
uterus, the effects of progestin treatment were not re-
ported (6). An earlier study in young ovariectomized rats
showed significant induction of IGF-I mRNA and protein
in the uterus after estrogen administration, but again no
data were presented on the effect of progestins alone or
in combination with estrogen (5). Interestingly, the well-
characterized hemopoetic growth factor, colony stimu-
lating factor-I (CSF-1), is found in high concentrations
in the pregnant mouse uterus, and it has recently been
demonstrated that it is synthesized in the luminal and
glandular epithelium under the regulation of estradiol
and progesterone. It has been postulated that uterine
CSF-1 regulates placental trophoblast proliferation and
differentiation via a paracrine mechanism (253). More
recently another cytokine, 7-interferon, has been shown
to inhibit the proliferation of both normal and neoplastic
human endometrial cells in vitro. However, it is unclear
at this stage how interferon interacts with estrogen and
progesterone to control endometrial proliferation (254).

Murphy and co-workers (255) were the first to examine
steroidal regulation of EGF gene expression in human
breast cancer cells. Using a cDNA probe to the human
EGF precursor they demonstrated EGF mRNA in T-
47D, ZR-75, and MDA-MB-468 but not in BT 20, MDA-
MB-231, or HBL 100 cells. Furthermore, it was shown
in T-47D and ZR-75 cells that EGF expression was
regulated by progestins in a steroid-specific, time- and
concentration-dependent manner. Progestin induction of
EGF mRNA was inhibited by the antiprogestin, RU 486.
Although this increased gene expression was associated
with the presence of high mol wt 40 and 18 K peptides
in the conditioned medium of T-47D cells that could be
immunoprecipitated with antibodies to human EGF and
its precursor, fully processed 6 K EGF was not detected
either in the conditioned medium or the cell lysate. The
authors stated that, under the experimental conditions
employed, the known growth-inhibitory effects of pro-
gestins on T-47D cells were difficult to reconcile with
progestin stimulation of growth factor synthesis. The
possibility was raised that such a phenomenon could be
a compensatory response to growth inhibition by proges-
tins. If this were so, it is not a mechanism shared with
other growth inhibitors of T-47D cells, e.g. antiestrogens
and RU 486, and would appear inconsistent with the
known ability of exogenous EGF to partially reverse the
growth-inhibitory effects of both progestins and anties-
trogens in these cells (256-259). Since the biological
activity of the high mol wt forms of EGF produced by
the T-47D cells is unknown, it is not yet possible to
determine whether this interesting phenomenon is im-
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portant in progestin control of human breast cancer cell
proliferation.

The same group also investigated the effects of pro-
gestins on a- and /3-TGF gene expression in T-47D cells
(260). Like EGF, the expression of a-TGF in this cell
line was increased in a time- and concentration-depend-
ent manner by progestins and was inhibited by RU 486.
Other steroid hormones were without effect. In contrast,
the abundance of 0-TGF mRNA was decreased in a time-
and concentration-dependent manner by progestins, but
the relevance of this to any autocrine role is unclear, in
view of an inability to detect high affinity /3-TGF recep-
tors on T-47D cells. The authors concluded that these
data are not consistent with a- and /3-TGF functioning
directly as autocrine modulators of progestin-induced
growth inhibition (260) as had been previously suggested
for antiestrogens (4). However, these data need to be
reinterpreted in the light of new information on progestin
stimulation of growth (152, 153) and cell cycle progres-
sion in human breast cancer cells.

Similar experiments have been undertaken in this
laboratory except that cells were treated with progestins
while still in exponential growth; in the studies of Mur-
phy et al. (255, 260) regulation experiments were con-
ducted with confluent cultures. In agreement with the
previous findings (260) we observed a progestin-specific
induction of a-TGF mRNA in T-47D cells; the effect,
however, was much more rapid, being first apparent at
30 min, maximal at 6 h, and declining thereafter (261).
Such a result raises the question of the relationship, if
any, of this transient increase in a-TGF mRNA to the
rapid progression of a proportion of T-47D cells into S
phase, which was observed 12 h after progestin treatment
(Fig. 4).

There are a number of problems in attempting to draw
conclusions on how these data on progestin regulation of
growth factor gene expression (255, 260) relate to poten-
tial autocrine mechanisms of progestin-mediated growth
responses. Clearly, a number of regulatory steps occur
between mRNA production and the appearance of bio-
logically active growth factor, e.g. RNA processing, trans-
lation, posttranslational modification, secretion of pro-
peptides, and cleavage to the active product. Thus pro-
gestins could modulate the level of gene transcription
without a comparable effect on the biologically active
and available peptide. Until such data are available the
relationship between progestin control of growth factor
gene expression and autocrine regulation of growth will
remain unclear. However, what is clear from the limited
data currently available is that the situation for proges-
tins is much more complex than that for estrogens and
antiestrogens, where growth stimulation by estrogen is
associated with increased concentrations of biologically
active IGF-I and a-TGF, which appears to reflect tran-

scriptional activation of these genes. Antiestrogens ap-
pear to have the opposite effect (4).

2. Effects on growth factor receptor expression. Two of
the most potent mitogens for human breast cancer cells
in vitro are insulin and EGF (262-265). Since respon-
siveness to growth factors can be potentially modulated
by both the concentration of the growth factor and its
receptor, progestin regulation of growth factor receptor
levels may be important in progestin-mediated growth
responses.

Horwitz and Freidenberg (144) reported that growth
inhibition of the T-47Dco cell line by progestins was
associated with an increase in insulin receptor levels as
assessed by radioligand binding. Investigation of the
relationship between insulin receptor levels and growth
in untreated and R 5020-treated cells demonstrated that
elevation in insulin binding was most marked (4- to 5-
fold) during the first 3 days of treatment, when R 5020-
treated cells were completely growth arrested, but there-
after levels gradually declined to about twice control as
growth resumed at a new steady state. The implications
of these data are unclear, although the authors raised the
possibility that an increase in insulin receptors was a
generalized effect of a decreased growth rate (144).

Similar increases in cell surface receptor binding after
progestin treatment were noted in MCF 7 and T-47D
cells when lactogenic and EGF receptors were studied
(162, 266, 267). It was subsequently shown that this
effect of progestins could be accounted for by a progestin-
induced increase in EGF-R gene expression (268, 269).
As with the effect on insulin receptor, the induction of
EGF-R levels was not sustained (257). The initial sug-
gestion (162) that progestin increases in EGF-R and
insulin receptor number could sensitize the cells to
growth factor action appears unlikely, in view of the
recent observation of the lack of shift in the dose-re-
sponse to insulin and EGF in progestin-treated cells
(257).

Increases in EGF-R levels in the immature rat uterus
have been reported after estrogen administration (270),
and, in the mature animal, changes in EGF-R levels
parallel changes in plasma estrogen levels and the
amount of nuclear ER (271). Thus, in different experi-
mental systems, i.e. human breast cancer cells and rat
uterus, increases in EGF-R are accompanied by either
steroid-induced decreases or increases in cell prolifera-
tion. Such data indicate divergent regulation of growth
and EGF-R expression by sex steroids in different species
and/or target tissues.

3. Modulation of progestin effects by growth factors. Fur-
ther evidence for an intimate association between pro-
gestins and growth factors in the control of breast cancer
cell proliferation comes from a series of recent papers
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demonstrating modulation of the antiproliferative effects
of progestins by insulin and EGF (257-260, 272, 273).
These studies build upon earlier observations that the
sensitivity of breast cancer cells to the antiproliferative
effects of antiestrogens could be reduced by simultaneous
treatment with insulin or EGF (256, 258). Based on the
knowledge that PR is a substrate for EGF-R and insulin
receptor tyrosine kinases in vitro (274, 275), Sarup et al.
(257) investigated the effects of EGF on PR levels in
breast cancer cells. These studies provided evidence for
an EGF-mediated decrease in PR binding that may ac-
count for the EGF attenuation of progestin-induced in-
hibition of cell growth. Insulin was also shown to de-
crease PR binding (257). To date there are no published
data describing the mechanism of this down-regulation.
A similar EGF-induced down-regulation of GR in HBL
100 breast cancer cells was associated with phosphoryl-
ation of GR, suggesting a direct action of EGF-R kinase
on steroid receptors (276).

When T-47D cells were stimulated to proliferate in
serum-free medium with either EGF or insulin, both
peptides were able to attenuate progestin-induced growth
inhibition in a concentration-dependent fashion, with
complete attenuation of the inhibitory effect of R5020 at
0.1 nM and 1 fiM EGF and insulin, respectively (257). It
should be noted, however, that in these experiments cells
were harvested after only 1-1.5 population doublings of
control cells. The observation that nanomolar concentra-
tions of insulin caused a half-maximal decrease in PR
binding, while micromolar concentrations were required
to antagonize progestin-induced inhibition of cell growth,
argues against a causal relationship between these ef-
fects. The finding that insulin reversal of progestin-
induced cell growth inhibition was only seen in serum-
free medium, while the comparable EGF effect was ap-
parent either in the presence or absence of serum, sug-
gests that the two factors antagonize progestin action
via different mechanisms (257). The latter suggestion
agrees with the studies of Koga et al. (258), where the
effects of insulin and EGF alone, or in combination, on
progestin-induced growth inhibition were investigated in
medium supplemented with fetal calf serum. When EGF
and ORG 2058 were added simultaneously to exponen-
tially growing cultures, EGF attenuated the growth-in-
hibitory effect of ORG 2058 in a concentration-depend-
ent manner over a concentration range that indicated
that the effect was EGF-R mediated. At maximal effec-
tive concentrations EGF restored the growth rate to
midway between control and ORG 2058-treated cultures.
Insulin failed to modulate ORG 2058-induced inhibition
but acted synergistically with EGF to attenuate the
reduced growth rate. These data support the view of
Sarup et al. (257) that insulin and EGF modulate sensi-
tivity to progestins by different mechanisms, a conclu-

sion that is further supported by the differential effects
of insulin alone or in combination with EGF on the
attenuation of the response to antiestrogens in the same
cells (258). These data are interpreted as being compat-
ible with the autocrine hypothesis of breast cancer cell
replication, in that if progestins inhibited breast cancer
cell cycle progression in Gx phase by inhibiting autocrine
growth factor production and action, then the effect
would be expected to be attenuated by addition of exog-
enous growth factor, which was indeed the case. How-
ever, alternative mechanisms, particularly those involv-
ing growth factor modulation of steroid sensitivity via
changes in steroid receptors and vice versa, are also likely
(258). Further data on the interactions between growth
factors and steroid hormones in the control of breast
cancer cell replication are urgently required.

C. Effects on estrogen synthesis and metabolism

A potential mechanism for progestins to modulate the
effect of estrogens on cellular replication is by regulating
the concentration of the active estrogen, 17/3-estradiol,
thereby reducing the cellular concentration of this ligand
available for high affinity interaction with the ER. This
could be accomplished by progestin inhibition of the rate
of estradiol synthesis and/or stimulation of the rate of
estradiol inactivation to less potent metabolites. The
principal mechanism by which estrogen inactivation
takes place is by conversion to estrogen metabolites with
reduced or absent affinity for ER, and evidence discussed
below supports a role for progestins in this process.
Oxidation of estradiol to estrone, which has an affinity
for ER only 30% of that of estradiol, is the major route
of estradiol metabolism, particularly in the uterus, and
is usually accompanied by sulfurylation to form water-
soluble estrogen sulfates, which have no affinity for ER
and are rapidly excreted from the cell. Dehydrogenase
and sulfotransferase activities are accompanied by glu-
curonidation reactions in tissues involved with serum
detoxification such as the liver, and in these cases the
latter two activities are predominant. However, in target
tissues for sex steroid hormones such as the uterus and
breast, glucuronidation is a minor pathway of estrogen
metabolism and will not be discussed further. Inhibition
of estrogen synthesis is thought to be a major effect of
treatment of postmenopausal breast cancer patients with
MPA. Evidence that high dose MPA suppresses the
hypothalamo-pituitary-adrenal axis and, in turn, the
synthesis of adrenal androgens, supports this conclusion
(277). A further mechanism that is likely to be important
in regulating estrogen concentration is the activity of the
enzyme aromatase, which catalyzes estrogen formation
from androgen precursors, and this is discussed briefly.

1. Estradiol 17(3 -hydroxysteroid dehydrogenase. Estradiol

 by on January 1, 2010 edrv.endojournals.orgDownloaded from 

http://edrv.endojournals.org


288 CLARKE AND SUTHERLAND Vol. 11, No. 2

17/3-hydroxysteroid dehydrogenase activity was demon-
strated in the mammalian uterus in the 1960s. It was
shown that its activity in this tissue was low during the
proliferative phase of the menstrual cycle, when serum
estradiol levels were high, and increased dramatically
when serum progesterone levels increased during the
luteal phase of the cycle (13, 278, 281). This suggested
that estradiol oxidation to the less active estrone may
have a role in the conversion of proliferative to secretory
endometrium, and further implicated progesterone in
this process. This hypothesis was tested in vitro in the
mid-1970s, when it was demonstrated in perfusion ex-
periments that estradiol was rapidly converted to estrone
in secretory endometrium (280). The involvement of
progestins in the oxidation of estradiol was first demon-
strated at that time, when it was shown that culture of
human proliferative endometrial explants with proges-
terone or the synthetic progestin norgestrel resulted in a
dramatic increase in estradiol dehydrogenase activity
(282). This increase was noted as early as 7 h after
treatment, and was shown to be dependent on ongoing
transcription and translation. The location of estradiol
dehydrogenase in the endometrium was investigated by
ultrastructural and biochemical methods, which showed
that the highest concentration of the enzyme was found
in epithelial cells (283, 284). It was further shown that
the ability of progestins to increase estradiol dehydrog-
enase was restricted to the glandular epithelium of the
endometrium, and was not evident in stromal tissue, and
this was attributed to the higher concentration of PR in
epithelial vs. stromal cells (285, 286).

The demonstration in vitro of the ability of progestins
to increase the activity of estradiol dehydrogenase in the
normal proliferative endometrium was followed by an
examination of the activity of this enzyme in endometrial
carcinoma tissue (124, 287, 288). Estradiol dehydroge-
nase was shown to be present in biopsy material, and its
activity was markedly higher in patients who had re-
ceived progestin therapy (such as MPA). The increase in
estradiol dehydrogenase after therapy was related also to
the PR status of tumors.

The role of estradiol dehydrogenase in estradiol oxi-
dation, and the action of progestins in stimulating this
activity in the uterus, became widely acknowledged. It
was also shown that estradiol dehydrogenase activity was
highest in normal breast tissue in the early secretory
phase of the cycle (289). The implication that progestins
increased the enzyme activity in the breast was not tested
directly until the development of in vitro culture systems
for normal mammary cells, and it was shown that pro-
gestins stimulated the activity of the enzyme in the
epithelial but not the fibroblast, or stromal, components
of the breast (290), confirming the observations made in
the uterus. The progestin-mediated increase in estradiol

dehydrogenase could be prevented 19 h after treatment
by both transcriptional and translational inhibitors, but
only by translational inhibitors 6 h after treatment (112),
perhaps suggesting that although the progestin effect
was mediated transcriptionally, the half-life of the estra-
diol dehydrogenase mRNA was long.

Estradiol dehydrogenase activity was shown to be
higher in breast carcinoma tissue from premenopausal
patients in the luteal phase of the menstrual cycle, and
in postmenopausal patients who had been treated with
progestins such as lynestrenol (291). The ability of pro-
gestins to increase estradiol dehydrogenase was re-
stricted to patients whose tumors were PR positive.

The necessity for prior tissue/cell exposure to estradiol
before progestins were able to increase estradiol dehy-
drogenase activity has been established in a number of
studies and presumably reflects the necessity for PR
synthesis to take place before progestin responsiveness
can be manifested. In the endometrium it has not been
shown directly that estradiol pretreatment is required,
but there is evidence that very early in the cycle, i.e.
before maximal estradiol effects are apparent, prolifera-
tive tissue in normal endometrium responds poorly to
progestins in increasing estradiol dehydrogenase (282).
Furthermore, endometrial carcinoma tissue almost uni-
versally contains ER, yet only those tumors in which PR
is also present (presumably reflecting estrogen influence)
respond to progestins with an increase in estradiol de-
hydrogenase (287). In the breast it has been shown
directly in culture that estradiol pretreatment of normal
mammary cells was required before progestin-induced
increase of estradiol dehydrogenase could be observed
(112); moreover as mentioned above, progestin increase
of estradiol dehydrogenase was apparent in breast tumors
that contained PR. Taken together, the available evi-
dence in the uterus and breast support the necessity for
estrogen pretreatment before the stimulatory effects of
progestins on estradiol dehydrogenase activity can be
manifested.

Estradiol dehydrogenase is now known to consist of a
number of isoenzyme forms (292) which may be regulated
differently in various tissues and, indeed, within the same
tissue or cell in various metabolic states. It has also been
demonstrated in a number of studies that the tissue
concentrations of estrogens do not mirror the serum
concentrations, particularly in postmenopausal women
(293, 294). Despite the predominance of estrone in post-
menopausal serum, estradiol is the principal estrogen
measured in endometrial and in breast cancer tissue,
suggesting either that a concentration gradient of estra-
diol was maintained against the serum, or that serum
estrone was metabolized to estradiol by estradiol dehy-
drogenase in these tissues. This has resulted in a reex-
amination of the activity of estradiol dehydrogenase and
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its significance in the regulation of active estrogen levels.
In breast tumor tissue, where the activity of estradiol
dehydrogenase was measured under identical assay con-
ditions, the estradiol oxidative pathway was more rapid
than the reductive pathway, and the affinity of the
enzyme for estradiol and estrone was the same, suggest-
ing that under optimal conditions, the formation of es-
trone would predominate (294). In studies examining the
effect of progestins on estradiol dehydrogenase, the oxi-
dative pathway has usually been examined. However,
more recent studies using the human breast cancer cell
line MCF 7 have shown that progestins are able to
stimulate both oxidative and reductive activities equally
(150). The inference is then that the fate of tissue estro-
gens is acutely dependent on the substrate and cofactor
milieu within the cell, presumably favoring the oxidative
pathway under some conditions and the reductive in
others. The implications of this in determining the role
of estradiol dehydrogenase in regulating tissue availabil-
ity of estrogens in general, and the part played by pro-
gestins in particular, need further examination in the
light of these observations. Nevertheless, oxidation of
estradiol to estrone, when it occurs in well-characterized
instances such as in the endometrium, appears effective
in reducing the concentration of estrogen available for
binding to the estrogen receptor (295), a process that is
augmented greatly by progestins.

2. Estrogen sulfotransferase. Sulfated metabolites of es-
trogen are increased in the human uterus and in the
serum in the secretory phase of the cycle (278), in parallel
with the formation of estrone by estradiol dehydroge-
nase, and these water-soluble metabolites fail to bind to
ER and are rapidly excreted from the cell. Sulfurylation
is therefore a most effective mechanism whereby estro-
gen-mediated effects on proliferation can be attenuated.
Organ culture experiments have shown that estrogen
sulfotransferase activity, like estradiol dehydrogenase, is
increased by progestins in the human endometrium (296,
297). Unlike estradiol dehydrogenase, however, the con-
centration of estrogen sulfotransferase in the prolifera-
tive phase of the cycle is undetectable, and this enzyme
is therefore under much tighter control by progestins.
Very little if anything is known about the activity of this
enzyme in the breast, and most of the present informa-
tion has been derived from studies in the mammalian
uterus. The relative importance of the sulfurylation vs.
oxidative/reductive pathways of estrogen metabolism in
determining the ultimate fate of cellular estrogens is
presently unclear, although a recent study in vivo using
inhibitors of estrogen sulfotransferase suggested that
sulfurylation of estrogens reduced the pool of available
estrogens for binding to the ER (298).

3. Aromatase. The ability of breast tumors to aromatize

androgen precursors to estrogens has been well estab-
lished and has been proposed as a mechanism that con-
tributes to the etiology of breast cancer in postmenopau-
sal women. It may also provide another explanation for
the previously mentioned high concentration of estradiol
in tissues from these women. The effect of progestins on
aromatase activity has been examined and there is evi-
dence that progestins stimulate this activity in endome-
trial stromal cells without having any effect on the
activity in epithelial cells (299). There is also evidence
that aromatase activity measured in normal endome-
trium was lower in tissue from women in the secretory
phase of the cycle (300, 301), which may suggest that
aromatase activity is inhibited by progestins. Progestins
also appear able to inhibit aromatase activity modestly
in cultured breast carcinoma cells (302). Clearly, the role
of progestins in inhibiting estrogen formation by the
aromatase enzyme requires further clarification.

D. Effects on cellular differentiation

The acquisition of specialized functions and the ina-
bility to proliferate are among the marks of terminally
differentiated cells, and the induction of cellular differ-
entiation is an acknowledged mechanism through which
progestins act on estrogen-treated cells. The ability of
progestins to differentiate cells after estrogen treatment
is therefore one of a series of likely pathways through
which progestins inhibit the stimulatory effects of estro-
gens on cellular replication. There is a vast literature on
the effects of progestins on a variety of metabolic proc-
esses, including progestin stimulation of triglyceride bio-
synthesis and fatty acid synthetase in human breast
cancer cells (157, 303), but the evidence that these effects
lead to cellular differentiation is not clearcut. However,
the differentiating effects of progesterone on human
uterine physiology in preparation for implantation of the
fertilized ovum are well known. In the human uterus,
progestins induce glandular epithelial secretory activity
and decidual transformation of stromal fibroblasts. The
differentiating action of progestins on the human endo-
metrium is terminal: if implantation does not occur, the
tissue is shed and endometrial renewal from the basal
portion of the endometrium takes place.

1. Progestin effects on endometrial secretory activity. En-
dometrial secretory products produced in response to
progestins are important in the conversion of the endo-
metrium into an hospitable environment for the implant-
ing blastocyst. The production of secretory products by
epithelial cells represents a well defined circumstance in
which progestins induce differentiation of epithelial cells.
Secretory proteins-represent a major epithelial product
in progestin-treated endometria, and progestin control
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of such proteins has been demonstrated directly in rabbit
(uteroglobin) and porcine (uteroferrin) uteri. In the pig,
in particular, which has noninvasive placentation, uter-
oferrin is thought to play a key role during pregnancy in
nourishing the developing conceptus. Uteroglobin from
the rabbit uterus has been cloned and sequenced, and
progestins have been shown to regulate its concentration
by a transcriptional mechanism [(304); reviewed in Ref.
14]. Pig uteroferrin has recently been cloned, and pro-
gestins have been shown to increase the steady state
concentration of its mRNA (305). In the rabbit and the
pig therefore, it is clear that progestins act directly to
promote secretory capacity of the uterus.

In the human, histochemical analysis has shown that
glycogen production and secretion by epithelial cells was
high in the secretory phase of the cycle. Progestin in-
volvement in transcriptional regulation of this event has
yet to be demonstrated. However, organ culture of human
endometrial explants from women in the proliferative
phase of the cycle showed that progesterone treatment
consistently increased tissue glycogen content (306). The
addition of estradiol in combination with progesterone
did not enhance the effect further, suggesting that the
tissue was fully estrogen primed at the time of progester-
one treatment. The increase in tissue glycogen content
after progesterone exposure in the secretory phase of the
cycle has been shown to be due to increases in the
activities of glycogen synthetase and glycogen phospho-
rylase enzymes, which reached their maximal activity in
the midsecretory phase (307).

2. Progestin induction of stromal decidualization in the
human uterus. Decidualization is described as the pro-
gesterone-mediated differentiation of small fibroblast-
like stromal cells into large epithelioid decidual cells.
This process begins late in the menstrual cycle, on or
around day 23, and is accompanied in fertile cycles by
the implantation event. Decidualization is accompanied
by an increase in the uterine production of decidual PRL
(dPRL), which has been shown to be identical to pitui-
tary PRL and is a marker of progestin-induced tissue
differentiation. PRL produced in decidual cells is found
in high concentration in amniotic fluid, presumably after
traversing the chorion, and is thought to be involved in
osmoregulation and preservation of amniotic fluid vol-
ume.

In order to study the involvement of progesterone in
stromal decidualization and dPRL production, organ cul-
tures of human endometrium were employed. That dPRL
was a product of secretory tissue was shown in 2 ways.
First, proliferative tissue alone was incapable of dPRL
synthesis but could be induced to produce dPRL after 2
days of culture in the presence of progesterone (308,
309). Second, secretory tissue, even when cultured in the

absence of progesterone, produced dPRL although ex-
ogenous progesterone was required to maintain dPRL
secretion beyond 3 days of culture. Production of dPRL
from tissue grown in organ culture in the presence of
progesterone was accompanied by morphological indica-
tions of stromal decidualization (308, 309). PRL produc-
tion was maintained during several weeks of continuous
progesterone exposure after which the tissue was com-
posed almost entirely of decidual cells, the glandular
epithelial elements having largely disappeared (309).
Continued secretion of dPRL was dependent on the
continued presence of progesterone; withdrawal of the
steroid from organ cultures of secretory endometrium
resulted in continued synthesis of dPRL for several days,
due presumably to the long half-life of the dPRL mRNA,
followed by a progressive decline in synthesis to unstim-
ulated levels. Readministration of progesterone at this
point resulted in a second wave of PRL synthesis (308).
The influence of estrogen on the stromal decidualization
process has not been closely examined, but there is
evidence that concomitant administration of estradiol
and progesterone delays and even inhibits decidualiza-
tion (310), and inappropriately high estradiol levels in
the secretory phase have been implicated in the dyshar-
monic luteal phase syndromes and resultant reproductive
disorders.

VI. Conclusions

A. Effects of progesterone on cellular proliferation in vivo

It is abundantly clear that the effects of progesterone
on cell proliferation in general, and on estrogen-mediated
cell proliferation in particular, are diverse. They vary
among the different cell types of the uterus and mam-
mary gland within a single animal, in the same cell types
in different species, and even between species in the
various physiological states characterizing the female
reproductive cycle.

In the uterus, there are marked differences in prolif-
eration in epithelial and stromal elements. However, the
growth-inhibitory actions of progesterone in this organ
are largely consistent both with the known distribution
and regulation of ER in the cell types comprising the
uterus, and with the likely mechanisms, discussed in
Section V, by which progestins modulate cell prolifera-
tion. Progestins have been shown in the human to down-
regulate ER in epithelium, stroma, and myometrium, in
agreement with the ability of progestins to inhibit estro-
gen-mediated proliferation in all the cell types of the
uterus. Furthermore, progestins increase estradiol dehy-
drogenase and estrogen sulfotransferase activities which,
in the cellular microenvironment, would be expected to
reduce the concentration of estradiol available for bind-
ing to ER. Progestin induction of epithelial secretory
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activity followed by secretory exhaustion combines with
these effects on ER and estrogen metabolizing activities
to completely remove the influence of estrogen from the
epithelium and induce terminal differentiation. In this
regard both the action of progesterone in opposing estro-
gen-mediated events, and the likely mechanisms by
which this action takes place, are easily explained by the
available experimental and biological evidence. The
known effectiveness of progestin therapy on a proportion
of endometrial carcinomas can also be explained by
invoking progestin action via the same regulatory mech-
anisms, particularly in well-differentiated malignancies.

In contrast with the epithelium, the uterine stroma
has a unique response to estrogen and progesterone, due
in no small measure to its specialized role in the devel-
opment and maintenance of pregnancy. In the adult
animal the stroma, like the epithelium, proliferates in
response to estrogen, but in the rodent the response to
estrogen can only occur after progesterone priming. The
zona basalis of the monkey endometrium proliferates
under the influence of progesterone, and it is postulated
that this causes multiplication of stem cells responsible
for endometrial regeneration. Furthermore, in the human
the stroma proliferates during the secretory, progester-
one-dominated, phase of the cycle in preparation for
blastocyst implantation and eventual transformation of
the stroma into the maternal compartment of the pla-
centa.

It is important to note that where progesterone stim-
ulates proliferation in the uterus or oviduct, with the
notable exception of the rabbit uterus in which proges-
terone is clearly the main drive to proliferation, the
proliferation that ensues is usually transient. This pro-
liferation differs from the sustained proliferative action
of estradiol, and may be required to "prime" cells in some
way to respond to the differentiating effects of proges-
terone, PRL and/or other hormones. In this way proges-
terone, by inhibiting estradiol-mediated proliferation
and either priming cells for differentiation or acting
directly as a differentiating agent, is likely to be the main
factor that commits the uterus to prepare for pregnancy.

The growth-stimulatory action of progesterone in the
stroma of the human uterus is consistent with the known
regulation of PR. Growth stimulation is observed in the
face of high circulating progesterone concentrations, and
it has been shown that although PR levels are decreased
markedly by progesterone in epithelial cells, the reduc-
tion observed in the stroma and myometrium is transient
and modest in magnitude. There is also growing evidence
that PR is not down-regulated in a variety of situations
in which sustained progesterone exposure may be asso-
ciated with continued responsiveness to progesterone.
This demonstrates that PR is maintained in cells that
maintain progesterone responsiveness.

In the mammary gland, estradiol and progesterone
both stimulate proliferation but in different morpholog-
ical elements. While estradiol is responsible for the pro-
liferation of the epithelial end bud and ductal systems,
progesterone causes ductal side branching and lobuloal-
veolar development. Because lobuloalveolar development
is required for milk production, progesterone can be
considered to have the same role in the mammary gland
as in the uterus, namely the commitment of the organ to
its differentiated function. It is also apparent from stud-
ies in the mouse that the proliferative effect of proges-
terone in the mammary gland is transient, as appears to
be the case in the uterus, although the effect of sustained
progestin exposure on long term proliferative activity in
the human breast has yet to be determined. In contrast
with the uterus, however, progesterone does not have a
dramatic inhibitory effect on estrogen-mediated prolif-
eration and may even potentiate the action of estrogen.
Accordingly, the generally accepted view that progester-
one acts by opposing estrogen action is not easily rec-
onciled with the effects of progesterone on the mammary
gland in general, but may be of importance in particular
cell types such as ductal epithelium and thus perhaps
ductal carcinoma of the breast.

It is difficult to reconcile the proliferative effects of
progesterone on the breast and mammary gland in vivo
with the known effectiveness of progestins in the treat-
ment of patients with PR-positive breast cancer without
invoking such cell type specificity of action. Further-
more, the mechanisms by which progesterone exerts its
effects in the mammary gland are not clearcut, and there
is little immunohistochemical evidence either that ER
and PR are present in the epithelial cells that respond
to estrogen and progesterone or that the regulation of
these receptors in normal cells takes place within the
accepted model defined in the uterus. There is also no
strong evidence that potential mechanisms of progestin
action discussed in Section V pertain to the mammary
gland or to the normal human breast. It is clear therefore
that the mechanisms by which progestins affect cell
proliferation in the breast are not evident from the in
vivo literature and must be deduced from an analysis of
the effects of progestins in vitro.

B. Effects of progestins on cellular proliferation in vitro

In agreement with studies conducted in vivo, treatment
of progesterone target tissues with progestins in vitro has
resulted in both growth-inhibitory and growth-stimula-
tory effects. In concordance with studies in vivo the
response is cell type specific. The effects on the uterus
are the most straightforward, in that progestin treatment
of normal and neoplastic tissue from a number of differ-
ent species in both organ and cell culture confirmed the
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predominant inhibitory effect of progestin on uterine
epithelial cell proliferation. The limited studies on uter-
ine stromal cells in vitro tend to support observations
made in vivo.

Progestin enhancement of proliferation has been ob-
served most consistently in organ culture of normal and
neoplastic rodent mammary gland, cell culture of rat
mammary carcinoma, and, less consistently, in normal
and neoplastic breast cells and human breast cancer cell
lines growing in an estrogen-free environment. Potential
species differences in the cellular origin of mammary
carcinoma and endocrine control mechanisms make it
difficult to formulate rational hypotheses on the molec-
ular basis of these stimulatory effects in most systems
studied. However evidence for a direct stimulatory effect
comes from studies on T-47D cells, where, in an estrogen-
free environment, progestin induces a transient increase
in cell cycle progression. Under such circumstances, a
significant proportion of the cells traverse the cell cycle
at an accelerated rate and complete a round of replica-
tion, before succumbing to the ultimate growth-inhibi-
tory effects of the agent in this experimental system (Fig.
4). This mechanism may have parallels with the transient
stimulation of a single round of replication after proges-
tin treatment in a number of different target tissues in
vivo. The molecular basis for this effect is not clear at
this time, but probably involves the progestin-induced
transcription of specific genes involved directly or indi-
rectly in the control of cell cycle progression (Fig. 5).
The recent demonstration that progestins increase
expression of a-TGF, a proposed autocrine growth factor
for human breast cancer, adds support to such an hy-
pothesis. Whether this increased production of a-TGF
is the stimulus for accelerated cell cycle progression, or
the consequence of an earlier progestin-induced effect on
the cell cycle, remains to be elucidated. It is also unclear
whether this in vitro phenomenon accounts for the pro-
posed stimulatory effects of progesterone on human lob-
uloalveolar cell proliferation, particularly that which oc-
curs at the end of each menstrual cycle.

Interestingly, the direct growth-stimulatory effects of
progestins on human breast cancer cells have only re-
cently been documented due, presumably, to the use of
estrogen-free culture media. When the same cell lines
are grown in the presence of estrogen or under other
culture conditions that give near maximal growth rates,
the stimulatory effects of progestins are masked, due
probably to maximal stimulation of cell cycle progres-
sion, and the well documented growth-inhibitory effects
of progestins predominate. This interpretation is com-
patible with an emerging view that cell cycle progression
in human breast cancer cells is regulated by multiple
redundant pathways (Fig. 5).

The inhibition of cell proliferation by progestins is

accompanied by specific changes in cell cycle kinetic
parameters that have been clearly defined both in vivo
and in vitro and point to specific inhibition/arrest of cell
cycle progression at a point early in Gx phase. A hypo-
thetical model to explain the known effects of progestins
in both stimulating and inhibiting cell cycle progression
in human breast cancer cells in culture is presented in
Fig. 5. In this model the rate of cell cycle progression is
controlled by the product of a hypothetical gene termed
"START"1, the transcription of which is positively reg-
ulated by a number of known mitogens for breast cancer
cells including estrogens, serum, insulin, EGF and a-
TGF. Transcription of this gene may be regulated di-
rectly by these factors or indirectly by the products of
other specifically induced genes. A direct effect of pro-
gestin via PR and a progestin response element (PRE)
is favored because of the more rapid onset of accelerated
cell cycle progression observed after progestin treatment
when compared with estrogen or serum (Musgrove and
R. L. Sutherland, unpublished observations). The net
effect of increased levels of the "START" gene product
is to increase the rate of progression through the cell
cycle due to a marked reduction in the Gi transit time.
These cells, however, complete only one round of repli-
cation because, as they reenter Gx phase, their further
progression is arrested by the action of another proges-
tin-induced gene product termed "STOP" which acts
early in Gi phase to inhibit further cell cycle progression.

This model accommodates most known effects of ste-
roids, steroid antagonists, and growth factors on breast
cancer cell proliferation in vitro and many of the known
effects of progestins in vivo. It proposes that stimulation
by a number of diverse agents is mediated by multiple
redundant pathways that converge on the transcription
of START. The inhibitory effects of antiestrogens and
antiprogestins would then be mediated via inhibition of
the synthesis of START in contrast to progestin action
via STOP. This would account for the lack of a transient
increase in cell cycle progression before growth arrest
and the earlier accumulation of cells in Gi phase (Mus-
grove E. A., and R. L. Sutherland, unpublished observa-
tions) of these antihormonal agents.

In contrast to the control of START by multiple
factors, the STOP gene is postulated to be under the
direct and specific control of progestins. Since it acts
very early in G1} it will counteract the potential influence
of any signal that occurs later in the cell cycle to stimu-
late progression, e.g. START. This would explain the
ability of progestins to inhibit/arrest proliferation that
had previously been initiated by other factors including

1 This gene has functions in common with the 'cell division cycle'
genes involved in the regulation of the event in the yeast cell cycle
described as 'start' but is not necessarily homologous with any of these
yeast genes.
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FIG. 5. A hypothetical model of the ef-
fects of progestins on cell cycle progres-
sion in human breast cancer cells in vi-
tro. The rate of cell cycle progression is
controlled by the product of a hypothet-
ical gene termed "START" whose pro-
moter activity is regulated directly
(PRE, ERE, SRE) and/or indirectly
(PRIP, ERIP, SIP) by progestins, estro-
gens and other serum factors including
growth factors. The point of action of
START within the cell cycle is beyond
the point early in G! phase where the
hypothetical STOP signal arrests or in-
hibits cell cycle progression. The activity
of the STOP gene product is regulated
transcriptionally by a PRE in the pro-
moter region of this gene. PRE, Proges-
tin response element; ERE, estrogen re-
sponse element; SRE, serum response
element; PRIP, ERIP, and SIP are the
products of genes induced by PRE, ERE,
and SRE, respectively, and are able to
bind to, and regulate the activity of the
START promoter.

INDIRECT

DIRECT

estrogen, insulin, and serum. It appears likely that the
STOP gene encodes a differentiation factor that removes
the cells from the cell cycle.

It is envisaged that the progestin control of START
and STOP is independent, although it is possible that in
some cell types both genes are not active, and only one
of these mechanisms is operative. Thus, in some cell
types in vivo progestin could induce a sustained prolif-
erative effect via continued synthesis of START without
a concurrent signal to differentiate, while in other cell
types the progestin-induction of STOP would invoke
growth arrest and differentiation irrespective of the stim-
ulus to proliferate.

C. Future directions

The ability of progestins to both stimulate and inhibit
cell proliferation in vivo has important implications in
the long-term use of these agents in the human for
therapy or prophylaxis. It is critical therefore to deter-
mine exactly which cells in the breast are stimulated to
grow by progestins and, more importantly, whether pro-
gestins are able to cause sustained proliferation in these
cells. It is also essential to an understanding of progestin
action to determine whether the transient proliferation
induced by progestins is a prerequisite ("priming" effect)
for full expression of the differentiating capacity of pro-
gestins.

The presence or absence of ER and PR, particularly
in the various cell types of the breast, urgently needs to
be evaluated as a first step in determining whether the

effects of progestins on the cells that proliferate are likely
to be direct or mediated by paracrine mechanisms.

The formulation of a model for the control of cell cycle
progression by progestins in vitro necessitates the further
critical evaluation of its predictions and detailed experi-
mental analysis of its universal applicability to a range
of progestin-sensitive cell types. Identification of a cell
cycle control gene, with the properties of START and
under the control of the regulators proposed in Fig. 5, is
an essential part of evaluating this model. Recent major
advances in our understanding of the molecular mecha-
nisms of cell cycle control help to identify potential
candidate genes, which include the cell cycle division
genes (cdc genes) and their regulators, proto-oncogenes,
and autocrine growth factor genes. Similarly, the iden-
tification of the STOP signal, which may well be a signal
for terminal differentiation, is of critical importance. At
this time, there are no obvious candidates for this func-
tion.

Recent major advances in cell culture techniques have
facilitated the study of growth control and differentiation
in a wide range of normal and neoplastic tissues in a
chemically defined, serum-free environment. The use of
such techniques to evaluate the effects of progestins on
a variety of cell types, which are known to have diverse
responses to progestins in vivo, will determine whether
or not the stimulatory and inhibitory effects of progestins
are always expressed together. Differential expression of
the stimulatory and inihibitory pathways in different cell
types may help to explain the apparently paradoxical
effects of progestins on cell proliferation in different
target tissues.
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